IDEAS home Printed from
   My bibliography  Save this book

Neural Networks in Finance


  • McNelis, Paul D.

    (Robert Bendheim Professor of International Economic and Financial Policy at Fordham University Graduate School of Business. Professor of Economics at Georgetown University until 2004.)


This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. McNelis utilizes a variety of examples, from forecasting automobile production and corporate bond spread, to inflation and deflation processes in Hong Kong and Japan, to credit card default in Germany to bank failures in Texas, to cap-floor volatilities in New York and Hong Kong. * Offers a balanced, critical review of the neural network methods and genetic algorithms used in finance * Includes numerous examples and applications * Numerical illustrations use MATLAB code and the book is accompanied by a website

Suggested Citation

  • McNelis, Paul D., 2004. "Neural Networks in Finance," Elsevier Monographs, Elsevier, edition 1, number 9780124859678.
  • Handle: RePEc:eee:monogr:9780124859678

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Manel Hamdi & Chaker Aloui & Santosh kumar Nanda, 2016. "Comparing Functional Link Artificial Neural Network And Multilayer Feedforward Neural Network Model To Forecast Crude Oil Prices," Economics Bulletin, AccessEcon, vol. 36(4), pages 2430-2442.
    2. Wei Huang & Kin Keung Lai & Yoshiteru Nakamori & Shouyang Wang & Lean Yu, 2007. "Neural Networks In Finance And Economics Forecasting," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 113-140.
    3. Burka, David & Puppe, Clemens & Szepesvary, Laszlo & Tasnadi, Attila, 2016. "Neural networks would 'vote' according to Borda's rule," Working Paper Series in Economics 96, Karlsruhe Institute of Technology (KIT), Department of Economics and Business Engineering.
    4. Manel Hamdi & Sami Mestiri, 2014. "Bankruptcy prediction for Tunisian firms : An application of semi-parametric logistic regression and neural networks approach," Economics Bulletin, AccessEcon, vol. 34(1), pages 133-143.
    5. Craig Ellis & Patrick J. Wilson & Ralf Zurbruegg, 2007. "Real Estate ‘Value’ Stocks and International Diversification," Journal of Property Research, Taylor & Francis Journals, vol. 24(3), pages 265-287, September.
    6. Carlos León & José Fernando Moreno & Jorge Cely, 2016. "Whose Balance Sheet is this? Neural Networks for Banks’ Pattern Recognition," Borradores de Economia 959, Banco de la Republica de Colombia.
    7. Anderson, Richard G. & Binner, Jane M. & Schmidt, Vincent A., 2012. "Connectionist-based rules describing the pass-through of individual goods prices into trend inflation in the United States," Economics Letters, Elsevier, vol. 117(1), pages 174-177.
    8. Olcay Erdogan & Ali Goksu, 2014. "Forecasting Euro and Turkish Lira Exchange Rates with Artificial Neural Networks (ANN)," International Journal of Academic Research in Accounting, Finance and Management Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Accounting, Finance and Management Sciences, vol. 4(4), pages 307-316, October.
    9. Montero-Romero, Teresa & López-Martín, María del Carmen & Becerra-Alonso, David & Martínez-Estudillo, Francisco José, 2012. "Extreme Learning Machine to Analyze the Level of Default in Spanish Deposit Institutions || Análisis de la morosidad de las entidades financieras españolas mediante Extreme Learning Machine," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 13(1), pages 3-23, June.
    10. M. Kanevski & M. Maignan & A. Pozdnoukhov & V. Timonin, 2007. "Interest rates mapping," Papers 0709.4361,
    11. Jiří Trešl, 2011. "Srovnání vybraných metod predikce změn trendu indexu PX
      [Selected Methods of the Prediction of PX Index Trend Reversal]
      ," Politická ekonomie, University of Economics, Prague, vol. 2011(2), pages 184-204.
    12. Elsy Gómez-Ramos & Francisco Venegas-Martínez, 2013. "A Review of Artificial Neural Networks: How Well Do They Perform in Forecasting Time Series?," Analítika, Analítika - Revista de Análisis Estadístico/Journal of Statistical Analysis, vol. 6(2), pages 7-15, Diciembre.
    13. Kerem SENEL & A. Bulent PAMUKCU, 2012. "A Comparative Study For Multi-Period Asset Allocation Of Defined Contribution Schemes: Evidence From Turkey," Istanbul Commerce University Journal of Social Sciences, Istanbul Commerce University, vol. 21(1), pages 289-304.
    14. Ortíz Arango Francisco & Cabrera Llanos Agustín Ignacio & López Herrera Francisco, 2013. "Pronóstico de los índices accionarios DAX y S&P 500 con redes neuronales diferenciales," Contaduría y Administración, Accounting and Management, vol. 58(3), pages 203-225, julio-sep.
    15. Cabrera Llanos Agustín Ignacio & Ortíz Arango Francisco, 2012. "Pronóstico del rendimiento del IPC (Índice de Precios y Cotizaciones)mediante el uso de redes neuronales diferenciales," Contaduría y Administración, Accounting and Management, vol. 57(2), pages 63-81, abril-jun.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:monogr:9780124859678. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.