IDEAS home Printed from https://ideas.repec.org/a/rjr/romjef/vy2015i1p93-106.html
   My bibliography  Save this article

Out-Of-Sample Forecasting Performance Of A Robust Neural Exchange Rate Model Of Ron/Usd

Author

Listed:
  • Corina SAMAN

    (Institute for Economic Forecasting, Romanian Academy)

Abstract

This paper aims to explore the forecasting accuracy of RON/USD exchange rate structural models with monetary fundamentals. I used robust regression approach for constructing robust neural models less sensitive to contamination with outliers and I studied its predictability on 1 to 6-month horizon against nonrobust linear and nonlinear regressions and, especially, random walk. The results show that robust model with low breakdown point improve the forecast accuracy of RW and AR models on 1- and 4-month horizon and performs better than RW at all time horizons.

Suggested Citation

  • Corina SAMAN, 2015. "Out-Of-Sample Forecasting Performance Of A Robust Neural Exchange Rate Model Of Ron/Usd," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 93-106, March.
  • Handle: RePEc:rjr:romjef:v::y:2015:i:1:p:93-106
    as

    Download full text from publisher

    File URL: http://www.ipe.ro/rjef/rjef1_15/rjef1_2015p93-106.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Buncic, 2012. "Understanding forecast failure of ESTAR models of real exchange rates," Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
    2. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    3. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    4. Alan M. Taylor & Mark P. Taylor, 2004. "The Purchasing Power Parity Debate," Journal of Economic Perspectives, American Economic Association, vol. 18(4), pages 135-158, Fall.
    5. Chinn, Menzie D., 2000. "Before the fall: were East Asian currencies overvalued?," Emerging Markets Review, Elsevier, vol. 1(2), pages 101-126, September.
    6. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    7. Cheung, Yin-Wong & Chinn, Menzie D. & Pascual, Antonio Garcia, 2005. "Empirical exchange rate models of the nineties: Are any fit to survive?," Journal of International Money and Finance, Elsevier, vol. 24(7), pages 1150-1175, November.
    8. L. Ingber, 1993. "Simulated annealing: Practice versus theory," Lester Ingber Papers 93sa, Lester Ingber.
    9. Richard A. Meese & Andrew K. Rose, 1991. "An Empirical Assessment of Non-Linearities in Models of Exchange Rate Determination," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 603-619.
    10. L. Ingber, 1989. "Very fast simulated re-annealing," Lester Ingber Papers 89vf, Lester Ingber.
    11. Qi, Min & Wu, Yangru, 2003. "Nonlinear prediction of exchange rates with monetary fundamentals," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 623-640, December.
    12. Sakata, Shinichi & White, Halbert, 2001. "S-estimation of nonlinear regression models with dependent and heterogeneous observations," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 5-72, July.
    13. Alan M. Taylor & Mark P. Taylor, 2004. "The Purchasing Power Parity Debate," Journal of Economic Perspectives, American Economic Association, vol. 18(4), pages 135-158, Fall.
    14. Inoue, Atsushi & Kilian, Lutz, 2006. "On the selection of forecasting models," Journal of Econometrics, Elsevier, vol. 130(2), pages 273-306, February.
    15. Diebold, Francis X. & Nason, James A., 1990. "Nonparametric exchange rate prediction?," Journal of International Economics, Elsevier, vol. 28(3-4), pages 315-332, May.
    16. Yuan, Chunming, 2011. "The exchange rate and macroeconomic determinants: Time-varying transitional dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 22(2), pages 197-220, August.
    17. Preminger, Arie & Franck, Raphael, 2007. "Forecasting exchange rates: A robust regression approach," International Journal of Forecasting, Elsevier, vol. 23(1), pages 71-84.
    18. Kuan, Chung-Ming & Liu, Tung, 1995. "Forecasting Exchange Rates Using Feedforward and Recurrent Neural Networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 347-364, Oct.-Dec..
    19. Granger, Clive W. J. & King, Maxwell L. & White, Halbert, 1995. "Comments on testing economic theories and the use of model selection criteria," Journal of Econometrics, Elsevier, vol. 67(1), pages 173-187, May.
    20. Shinichi Sakata & Halbert White, 1998. "High Breakdown Point Conditional Dispersion Estimation with Application to S&P 500 Daily Returns Volatility," Econometrica, Econometric Society, vol. 66(3), pages 529-568, May.
    21. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-275, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Preminger, Arie & Franck, Raphael, 2007. "Forecasting exchange rates: A robust regression approach," International Journal of Forecasting, Elsevier, vol. 23(1), pages 71-84.
    2. Khurshid Kiani & Terry Kastens, 2008. "Testing Forecast Accuracy of Foreign Exchange Rates: Predictions from Feed Forward and Various Recurrent Neural Network Architectures," Computational Economics, Springer;Society for Computational Economics, vol. 32(4), pages 383-406, November.
    3. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.
    4. Yuan, Chunming, 2011. "The exchange rate and macroeconomic determinants: Time-varying transitional dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 22(2), pages 197-220, August.
    5. Wu, Jyh-Lin & Hu, Yu-Hau, 2009. "New evidence on nominal exchange rate predictability," Journal of International Money and Finance, Elsevier, vol. 28(6), pages 1045-1063, October.
    6. Jaehun Chung & Yongmiao Hong, 2007. "Model-free evaluation of directional predictability in foreign exchange markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 855-889.
    7. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    8. Wu, Yih-Jiuan, 1998. "Exchange rate forecasting: an application of radial basis function neural networks," ISU General Staff Papers 1998010108000013540, Iowa State University, Department of Economics.
    9. repec:wyi:journl:002068 is not listed on IDEAS
    10. Jaehun Chung & Yongmiao Hong, 2013. "Model-Free Evaluation of Directional Predictability in Foreign Exchange," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    11. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    12. Krishna, Kala & Ozyildirim, Ataman & Swanson, Norman R., 2003. "Trade, investment and growth: nexus, analysis and prognosis," Journal of Development Economics, Elsevier, vol. 70(2), pages 479-499, April.
    13. Yuan, Chunming, 2011. "Forecasting exchange rates: The multi-state Markov-switching model with smoothing," International Review of Economics & Finance, Elsevier, vol. 20(2), pages 342-362, April.
    14. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    15. Carlo Altavilla & Paul De Grauwe, 2010. "Non-linearities in the relation between the exchange rate and its fundamentals," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(1), pages 1-21.
    16. Samuel W. Malone & Robert B. Gramacy & Enrique Ter Horst, 2016. "Timing Foreign Exchange Markets," Econometrics, MDPI, vol. 4(1), pages 1-23, March.
    17. Firat Melih Yilmaz & Ozer Arabaci, 2021. "Should Deep Learning Models be in High Demand, or Should They Simply be a Very Hot Topic? A Comprehensive Study for Exchange Rate Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 217-245, January.
    18. Nikola Gradojević & Vladimir Djaković & Goran Andjelić, 2010. "Random Walk Theory and Exchange Rate Dynamics in Transition Economies," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 57(3), pages 303-320, September.
    19. Carlo Altavilla & Paul De Grauwe, 2010. "Forecasting and combining competing models of exchange rate determination," Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3455-3480.
    20. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    21. Michele Ca’ Zorzi & Jakub Muck & Michal Rubaszek, 2016. "Real Exchange Rate Forecasting and PPP: This Time the Random Walk Loses," Open Economies Review, Springer, vol. 27(3), pages 585-609, July.

    More about this item

    Keywords

    exchange rate; forecasting; neural networks; outliers;
    All these keywords.

    JEL classification:

    • E22 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Investment; Capital; Intangible Capital; Capacity
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rjr:romjef:v::y:2015:i:1:p:93-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Corina Saman (email available below). General contact details of provider: https://edirc.repec.org/data/ipacaro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.