IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Forecasting exchange rates: A robust regression approach

  • Preminger, Arie
  • Franck, Raphael

The least squares estimation method as well as other ordinary estimation method for regression models can be severely affected by a small number of outliers, thus providing poor out-of-sample forecasts. This paper suggests a robust regression approach,based on the S-estimation method, to construct forecasting models that are less sensitive to data contamination by outliers. A robust linear autoregressive (RAR) and a robust neural network (RNN) models are estimated to study the predictability of twoexchange rates at the 1-, 3- and 6-month horizon. We compare the predictive ability of the robust models to those of the random walk (RW), the standard linear autoregressive (AR) and neural networks (NN) models in terms of forecast accuracy and sign predictability measures. We find that robust models tend to improve the forecasting accuracy of the AR and of theNNat all time horizons, and even of the RWfor forecasts carried out at the 1-month horizon. Robust models are also shown to have significantmarket timing ability at all forecast horizons.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6V92-4MK0HHC-1/2/ceaf87ea1df5e46abd6c16553342c534
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal International Journal of Forecasting.

Volume (Year): 23 (2007)
Issue (Month): 1 ()
Pages: 71-84

as
in new window

Handle: RePEc:eee:intfor:v:23:y:2007:i:1:p:71-84
Contact details of provider: Web page: http://www.elsevier.com/locate/ijforecast

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. L. Ingber, 2012. "Adaptive simulated annealing," Lester Ingber Papers 12as, Lester Ingber.
  2. van Norden, Simon, 1996. "Regime Switching as a Test for Exchange Rate Bubbles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(3), pages 219-51, May-June.
  3. L. Ingber, 1989. "Very fast simulated re-annealing," Lester Ingber Papers 89vf, Lester Ingber.
  4. Ledolter, Johannes, 1989. "The effect of additive outliers on the forecasts from ARIMA models," International Journal of Forecasting, Elsevier, vol. 5(2), pages 231-240.
  5. Sin, Chor-Yiu & White, Halbert, 1996. "Information criteria for selecting possibly misspecified parametric models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 207-225.
  6. Dunis, Christian L & Huang, Xuehuan, 2002. "Forecasting and Trading Currency Volatility: An Application of Recurrent Neural Regression and Model Combination," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(5), pages 317-54, August.
  7. Charles Engel, 1992. "Can the Markov Switching Model Forecast Exchange Rates?," NBER Working Papers 4210, National Bureau of Economic Research, Inc.
  8. Diebold, Francis X & Gardeazabal, Javier & Yilmaz, Kamil, 1994. " On Cointegration and Exchange Rate Dynamics," Journal of Finance, American Finance Association, vol. 49(2), pages 727-35, June.
  9. Lutz Kilian & Mark P. Taylor, 2001. "Why Is It So Difficult to Beat the Random Walk Forecast of Exchange Rates?," Working Papers 464, Research Seminar in International Economics, University of Michigan.
  10. Alexander, Don & Thomas, Lee III, 1987. "Monetary/asset models of exchange rate determination : How well have they performed in the 1980's?," International Journal of Forecasting, Elsevier, vol. 3(1), pages 53-64.
  11. MacDonald, Ronald & Taylor, Mark P., 1994. "The monetary model of the exchange rate: long-run relationships, short-run dynamics and how to beat a random walk," Journal of International Money and Finance, Elsevier, vol. 13(3), pages 276-290, June.
  12. Arie Preminger & David Wettstein, 2005. "Using the Penalized Likelihood Method for Model Selection with Nuisance Parameters Present only under the Alternative: An Application to Switching Regression Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(5), pages 715-741, 09.
  13. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
  14. Nag, Ashok K & Mitra, Amit, 2002. "Forecasting Daily Foreign Exchange Rates Using Genetically Optimized Neural Networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(7), pages 501-11, November.
  15. He, Xuming, 1991. "A local breakdown property of robust tests in linear regression," Journal of Multivariate Analysis, Elsevier, vol. 38(2), pages 294-305, August.
  16. Franses, Philip Hans & Ghijsels, Hendrik, 1999. "Additive outliers, GARCH and forecasting volatility," International Journal of Forecasting, Elsevier, vol. 15(1), pages 1-9, February.
  17. Filippo Altissimo & Valentina Corradi, 2002. "Bounds for inference with nuisance parameters present only under the alternative," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 494-519, 06.
  18. repec:att:wimass:9105 is not listed on IDEAS
  19. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  20. Wolff, Christian C. P., 1988. "Models of exchange rates : A comparison of forecasting results," International Journal of Forecasting, Elsevier, vol. 4(4), pages 605-607.
  21. van Dijk, D.J.C. & Franses, Ph.H.B.F. & Lucas, A., 1996. "Testing for Smooth Transition Nonlinearity in the Presence of Outliers," Econometric Institute Research Papers EI 9622-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  22. Chung-Ming Kuan, 2006. "Artificial Neural Networks," IEAS Working Paper : academic research 06-A010, Institute of Economics, Academia Sinica, Taipei, Taiwan.
  23. Donald W.K. Andrews, 1988. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Cowles Foundation Discussion Papers 877R, Cowles Foundation for Research in Economics, Yale University, revised Jul 1989.
  24. Diebold, Francis X. & Nason, James A., 1990. "Nonparametric exchange rate prediction?," Journal of International Economics, Elsevier, vol. 28(3-4), pages 315-332, May.
  25. Balke, Nathan S & Fomby, Thomas B, 1994. "Large Shocks, Small Shocks, and Economic Fluctuations: Outliers in Macroeconomic Time Series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 9(2), pages 181-200, April-Jun.
  26. L. Ingber, 1993. "Adaptive Simulated Annealing (ASA)," Lester Ingber Software asa, Lester Ingber.
  27. Sakata, Shinichi & White, Halbert, 2001. "S-estimation of nonlinear regression models with dependent and heterogeneous observations," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 5-72, July.
  28. Yongmiao Hong & Tae-Hwy Lee, 2003. "Inference on Predictability of Foreign Exchange Rates via Generalized Spectrum and Nonlinear Time Series Models," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 1048-1062, November.
  29. Qi, Min & Wu, Yangru, 2003. "Nonlinear prediction of exchange rates with monetary fundamentals," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 623-640, December.
  30. Engel, Charles & Hamilton, James D, 1990. "Long Swings in the Dollar: Are They in the Data and Do Markets Know It?," American Economic Review, American Economic Association, vol. 80(4), pages 689-713, September.
  31. Arifovic, Jasmina & Gençay, Ramazan, 2001. "Using genetic algorithms to select architecture of a feedforward artificial neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(3), pages 574-594.
  32. Phillips, Robert F., 1996. "Forecasting in the presence of large shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 20(9-10), pages 1581-1608.
  33. Gencay, Ramazan, 1999. "Linear, non-linear and essential foreign exchange rate prediction with simple technical trading rules," Journal of International Economics, Elsevier, vol. 47(1), pages 91-107, February.
  34. Shinichi Sakata & Halbert White, 1998. "High Breakdown Point Conditional Dispersion Estimation with Application to S&P 500 Daily Returns Volatility," Econometrica, Econometric Society, vol. 66(3), pages 529-568, May.
  35. Wolff, Christian C P, 1987. "Time-Varying Parameters and the Out-of-Sample Forecasting Performance of Structural Exchange Rate Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(1), pages 87-97, January.
  36. Pesaran, M.H. & Timmermann, A., 1990. "A Simple, Non-Parametric Test Of Predictive Performance," Cambridge Working Papers in Economics 9021, Faculty of Economics, University of Cambridge.
  37. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
  38. LeBaron, Blake, 1992. "Forecast Improvements Using a Volatility Index," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages S137-49, Suppl. De.
  39. Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
  40. Arie Preminger & Shinichi Sakata, 2007. "A model selection method for S-estimation," Econometrics Journal, Royal Economic Society, vol. 10(2), pages 294-319, 07.
  41. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
  42. Zinde-Walsh, Victoria, 2002. "Asymptotic Theory For Some High Breakdown Point Estimators," Econometric Theory, Cambridge University Press, vol. 18(05), pages 1172-1196, October.
  43. Granger, Clive W. J. & King, Maxwell L. & White, Halbert, 1995. "Comments on testing economic theories and the use of model selection criteria," Journal of Econometrics, Elsevier, vol. 67(1), pages 173-187, May.
  44. Kuan, Chung-Ming & Liu, Tung, 1995. "Forecasting Exchange Rates Using Feedforward and Recurrent Neural Networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 347-64, Oct.-Dec..
  45. Hsieh, David A, 1989. "Testing for Nonlinear Dependence in Daily Foreign Exchange Rates," The Journal of Business, University of Chicago Press, vol. 62(3), pages 339-68, July.
  46. Lisi, Francesco & Schiavo, Rosa A., 1999. "A comparison between neural networks and chaotic models for exchange rate prediction," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 87-102, March.
  47. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-75, July.
  48. Hotta, Luiz Koodi, 1993. "The effect of additive outliers on the estimates from aggregated and disaggregated ARIMA models," International Journal of Forecasting, Elsevier, vol. 9(1), pages 85-93, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:23:y:2007:i:1:p:71-84. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.