IDEAS home Printed from https://ideas.repec.org/a/kap/netnom/v14y2013i1p47-68.html
   My bibliography  Save this article

Can social microblogging be used to forecast intraday exchange rates?

Author

Listed:
  • Panagiotis Papaioannou
  • Lucia Russo
  • George Papaioannou
  • Constantinos Siettos

    ()

Abstract

The Efficient Market Hypothesis (EMH) is widely accepted to hold true under certain assumptions. One of its implications is that the prediction of stock prices at least in the short run cannot outperform the random walk model. Yet, recently many studies stressing the psychological and social dimension of financial behavior have challenged the validity of the EMH. Toward this aim, over the last few years, internet-based communication platforms and search engines have been used to extract early indicators of social and economic trends. Here, we used Twitter’s social networking platform to model and forecast the EUR/USD exchange rate in a high-frequency intradaily trading scale. Using time series and trading simulations analysis, we provide some evidence that the information provided in social microblogging platforms such as Twitter can in certain cases enhance the forecasting efficiency regarding the very short (intradaily) forex. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Panagiotis Papaioannou & Lucia Russo & George Papaioannou & Constantinos Siettos, 2013. "Can social microblogging be used to forecast intraday exchange rates?," Netnomics, Springer, vol. 14(1), pages 47-68, November.
  • Handle: RePEc:kap:netnom:v:14:y:2013:i:1:p:47-68
    DOI: 10.1007/s11066-013-9079-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11066-013-9079-3
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    2. Giacomo Raffaelli & Matteo Marsili, 2006. "Risk bubbles and market instability," Working Papers wp06-22, Warwick Business School, Finance Group.
    3. Iori, Giulia, 2002. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 269-285, October.
    4. Milgrom, Paul & Stokey, Nancy, 1982. "Information, trade and common knowledge," Journal of Economic Theory, Elsevier, vol. 26(1), pages 17-27, February.
    5. Frankel, Jeffrey A, 1982. "The Mystery of the Multiplying Marks: A Modification of the Monetary Model," The Review of Economics and Statistics, MIT Press, vol. 64(3), pages 515-519, August.
    6. Philippe Bacchetta & Eric Van Wincoop, 2006. "Can Information Heterogeneity Explain the Exchange Rate Determination Puzzle?," American Economic Review, American Economic Association, vol. 96(3), pages 552-576, June.
    7. Daniel, Kent & Hirshleifer, David & Teoh, Siew Hong, 2002. "Investor psychology in capital markets: evidence and policy implications," Journal of Monetary Economics, Elsevier, vol. 49(1), pages 139-209, January.
    8. Shleifer, Andrei, 2000. "Inefficient Markets: An Introduction to Behavioral Finance," OUP Catalogue, Oxford University Press, number 9780198292272.
    9. Erika Corona & Sabrina Ecca & Michele Marchesi & Alessio Setzu, 2008. "The Interplay Between Two Stock Markets and a Related Foreign Exchange Market: A Simulation Approach," Computational Economics, Springer;Society for Computational Economics, vol. 32(1), pages 99-119, September.
    10. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    11. MacDonald, Ronald & Taylor, Mark P., 1994. "The monetary model of the exchange rate: long-run relationships, short-run dynamics and how to beat a random walk," Journal of International Money and Finance, Elsevier, vol. 13(3), pages 276-290, June.
    12. Groen, Jan J. J., 2000. "The monetary exchange rate model as a long-run phenomenon," Journal of International Economics, Elsevier, vol. 52(2), pages 299-319, December.
    13. Burton G. Malkiel, 2005. "Reflections on the Efficient Market Hypothesis: 30 Years Later," The Financial Review, Eastern Finance Association, vol. 40(1), pages 1-9, February.
    14. Hon, Mark T. & Strauss, Jack K. & Yong, Soo-Keong, 2007. "Deconstructing the Nasdaq bubble: A look at contagion across international stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 17(3), pages 213-230, July.
    15. Steiglitz, Ken & Shapiro, Daniel, 1998. "Simulating the Madness of Crowds: Price Bubbles in an Auction-Mediated Robot Market," Computational Economics, Springer;Society for Computational Economics, vol. 12(1), pages 35-59, August.
    16. Menzie D. Chinn & Guy Meredith, 2004. "Monetary Policy and Long-Horizon Uncovered Interest Parity," IMF Staff Papers, Palgrave Macmillan, vol. 51(3), pages 409-430, November.
    17. Chaboud, Alain P. & Wright, Jonathan H., 2005. "Uncovered interest parity: it works, but not for long," Journal of International Economics, Elsevier, vol. 66(2), pages 349-362, July.
    18. Armin Shmilovici & Yoav Kahiri & Irad Ben-Gal & Shmuel Hauser, 2009. "Measuring the Efficiency of the Intraday Forex Market with a Universal Data Compression Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 33(2), pages 131-154, March.
    19. Carpenter, Jeffrey P, 2002. "Evolutionary Models of Bargaining: Comparing Agent-Based Computational and Analytical Approaches to Understanding Convention Evolution," Computational Economics, Springer;Society for Computational Economics, vol. 19(1), pages 25-49, February.
    20. Marsili, Matteo & Raffaelli, Giacomo, 2006. "Risk bubbles and market instability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 18-22.
    21. Preminger, Arie & Franck, Raphael, 2007. "Forecasting exchange rates: A robust regression approach," International Journal of Forecasting, Elsevier, vol. 23(1), pages 71-84.
    22. Christopher J. Neely, 2011. "A survey of announcement effects on foreign exchange volatility and jumps," Review, Federal Reserve Bank of St. Louis, issue Sep, pages 361-385.
    23. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    24. HelinÄ LaakkOnen & Markku Lanne, 2013. "The Relevance Of Accuracy For The Impact Of Macroeconomic News On Exchange Rate Volatility," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 18(4), pages 339-351, October.
    25. Kuan, Chung-Ming & Liu, Tung, 1995. "Forecasting Exchange Rates Using Feedforward and Recurrent Neural Networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 347-364, Oct.-Dec..
    26. Johansen, Anders, 2004. "Origin of crashes in three US stock markets: shocks and bubbles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 135-142.
    27. Nolte, Ingmar & Pohlmeier, Winfried, 2007. "Using forecasts of forecasters to forecast," International Journal of Forecasting, Elsevier, vol. 23(1), pages 15-28.
    28. Nikolsko-Rzhevskyy, Alex & Prodan, Ruxandra, 2012. "Markov switching and exchange rate predictability," International Journal of Forecasting, Elsevier, vol. 28(2), pages 353-365.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:ate:journl:ajbev4i4-2 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netnom:v:14:y:2013:i:1:p:47-68. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Andrew Huffard) The email address of this maintainer does not seem to be valid anymore. Please ask Andrew Huffard to update the entry or send us the correct email address. General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.