IDEAS home Printed from https://ideas.repec.org/p/sce/scecfa/256.html

Measuring the Efficiency of the Intraday Forex Market with a Universal Data Compression Algorithm

Author

Listed:
  • Y. Kahiri

    (Ben-Gurion University)

  • A. Shmilovici

    (Ben-Gurion University)

  • S. Hauser

    (Ben-Gurion University)

Abstract

The Efficient Market Hypothesis (EMH) states that the current market price fully reflects all available information. The weak form of the EMH considers only past price data and rules out predictions based on the price data only. The prices follow a random walk, where successive changes have zero correlation. Universal coding methods were developed within the context of coding theory to compress a data sequence without any prior assumptions about the statistics of the generating process. The universal coding algorithms - typically used for file compression - constructs a model of the data that will be used for coding it in a less redundant representation. Connection between compressibility and predictability exists in the sense that sequences, which are compressible, are easy to predict and conversely, incompressible sequences are hard to predict. Here we use the context tree algorithm of Rissanen which can be used to compress even relatively short data sets - like the ones available from economic time series. The weak form of the EMH is tested for one year for 12 pairs of international intra-day currency exchange rates. The currencies are described in table 1. The intra-day currency exchange rates were encoded for series of 1,5,10,15,20,25 and 30 minutes to a tri-nary string indicating a {low, stable, high} trend. Statistically significant compression is detected in all the time-series. A simulation of opening and closing positions demonstrated no profit beyond the commission for the intra-day trade. Our conclusion is that though the context tree is a useful tool for forecasting time series, the Forex market is efficient most of the time, and the short periods of inefficiency are not sufficient generating excess profit.

Suggested Citation

  • Y. Kahiri & A. Shmilovici & S. Hauser, 2006. "Measuring the Efficiency of the Intraday Forex Market with a Universal Data Compression Algorithm," Computing in Economics and Finance 2006 256, Society for Computational Economics.
  • Handle: RePEc:sce:scecfa:256
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tokár, T. & Horváth, D., 2012. "Market inefficiency identified by both single and multiple currency trends," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5620-5627.
    2. Indranil Ghosh & Tamal Datta Chaudhuri, 2017. "Fractal Investigation and Maximal Overlap Discrete Wavelet Transformation (MODWT)-based Machine Learning Framework for Forecasting Exchange Rates," Studies in Microeconomics, , vol. 5(2), pages 105-131, December.
    3. Brandouy, Olivier & Delahaye, Jean-Paul & Ma, Lin & Zenil, Hector, 2014. "Algorithmic complexity of financial motions," Research in International Business and Finance, Elsevier, vol. 30(C), pages 336-347.
    4. Shmilovici Armin & Ben-Gal Irad, 2012. "Predicting Stock Returns Using a Variable Order Markov Tree Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(5), pages 1-33, December.
    5. Lucio Maria Calcagnile & Fulvio Corsi & Stefano Marmi, 2016. "Entropy and efficiency of the ETF market," Papers 1609.04199, arXiv.org.
    6. J. C. Garza Sepúlveda & F. Lopez-Irarragorri & S. E. Schaeffer, 2023. "Forecasting Forex Trend Indicators with Fuzzy Rough Sets," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 229-287, June.
    7. Luís Lobato Macedo & Pedro Godinho & Maria João Alves, 2020. "A Comparative Study of Technical Trading Strategies Using a Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 349-381, January.
    8. Panagiotis Papaioannnou & Lucia Russo & George Papaioannou & Constantinos Siettos, 2013. "Can social microblogging be used to forecast intraday exchange rates?," Papers 1310.5306, arXiv.org.
    9. Lucio Maria Calcagnile & Fulvio Corsi & Stefano Marmi, 2020. "Entropy and Efficiency of the ETF Market," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 143-184, January.
    10. Panagiotis Papaioannou & Lucia Russo & George Papaioannou & Constantinos Siettos, 2013. "Can social microblogging be used to forecast intraday exchange rates?," Netnomics, Springer, vol. 14(1), pages 47-68, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • B23 - Schools of Economic Thought and Methodology - - History of Economic Thought since 1925 - - - Econometrics; Quantitative and Mathematical Studies
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecfa:256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.