IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpfi/0004007.html
   My bibliography  Save this paper

A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions

Author

Listed:
  • Giulia Iori

    (University of Essex)

Abstract

We propose a model with heterogeneous interacting traders which can explain some of the stylized facts of stock market returns. In the model, synchronization effects, which generate large fluctuations in returns, can arise purely from communication and imitation among traders. The key element in the model is the introduction of a trade friction which, by responding to price movements, creates a feedback mechanism on future trading and generates volatility clustering. The model also reproduces the empirically observed positive cross- correlation between volatility and trading volume.

Suggested Citation

  • Giulia Iori, 2000. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Finance 0004007, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpfi:0004007
    Note: Type of Document - Tex; prepared on unix; to print on PostScript; pages: 28; figures: included
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/0004/0004007.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Giulia Iori, 1999. "Avalanche Dynamics And Trading Friction Effects On Stock Market Returns," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 10(06), pages 1149-1162.
    2. Brock, William A & LeBaron, Blake D, 1996. "A Dynamic Structural Model for Stock Return Volatility and Trading Volume," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 94-110, February.
    3. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    4. John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993. "Trading Volume and Serial Correlation in Stock Returns," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(4), pages 905-939.
    5. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    6. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    7. Orlean, Andre, 1995. "Bayesian interactions and collective dynamics of opinion: Herd behavior and mimetic contagion," Journal of Economic Behavior & Organization, Elsevier, vol. 28(2), pages 257-274, October.
    8. Levy, Moshe & Solomon, Sorin, 1997. "New evidence for the power-law distribution of wealth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 242(1), pages 90-94.
    9. Ramsey, James B. & Zhang, Zhifeng, 1997. "The analysis of foreign exchange data using waveform dictionaries," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 341-372, December.
    10. Orosel, Gerhard O, 1998. "Participation Costs, Trend Chasing, and Volatility of Stock Prices," The Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 521-557.
    11. Rama Cont & Marc Potters & Jean-Philippe Bouchaud, 1997. "Scaling in stock market data: stable laws and beyond," Science & Finance (CFM) working paper archive 9705087, Science & Finance, Capital Fund Management.
    12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    13. Stauffer, Dietrich & Sornette, Didier, 1999. "Self-organized percolation model for stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 271(3), pages 496-506.
    14. Engle, Robert F. (ed.), 1995. "ARCH: Selected Readings," OUP Catalogue, Oxford University Press, number 9780198774327, December.
    15. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    16. Richard B. Olsen & Ulrich A. Müller & Michel M. Dacorogna & Olivier V. Pictet & Rakhal R. Davé & Dominique M. Guillaume, 1997. "From the bird's eye to the microscope: A survey of new stylized facts of the intra-daily foreign exchange markets (*)," Finance and Stochastics, Springer, vol. 1(2), pages 95-129.
    17. Yi-Cheng Zhang, 1999. "Toward a Theory of Marginally Efficient Markets," Papers cond-mat/9901243, arXiv.org.
    18. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    19. Zhang, Yi-Cheng, 1999. "Toward a theory of marginally efficient markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 269(1), pages 30-44.
    20. Copeland, Thomas E & Friedman, Daniel, 1987. "The Effect of Sequential Information Arrival on Asset Prices: An Experimental Study," Journal of Finance, American Finance Association, vol. 42(3), pages 763-797, July.
    21. Crato, Nuno & de Lima, Pedro J. F., 1994. "Long-range dependence in the conditional variance of stock returns," Economics Letters, Elsevier, vol. 45(3), pages 281-285.
    22. Dietrich Stauffer & Paulo M. C. De Oliveira & Americo T. Bernardes, 1999. "Monte Carlo Simulation Of Volatility Clustering In Market Model With Herding," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 83-94.
    23. G. Caldarelli & M. Marsili & Y. -C. Zhang, 1997. "A Prototype Model of Stock Exchange," Papers cond-mat/9709118, arXiv.org.
    24. Galam, Serge, 1997. "Rational group decision making: A random field Ising model at T = 0," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 238(1), pages 66-80.
    25. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    26. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    27. W. Brian Arthur & Paul Tayler, "undated". "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Computing in Economics and Finance 1997 57, Society for Computational Economics.
    28. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," The Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
    29. Ramsey, James B., 1996. "On the existence of macro variables and of macro relationships," Journal of Economic Behavior & Organization, Elsevier, vol. 30(3), pages 275-299, September.
    30. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    2. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    3. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    4. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034, December.
    5. Rama Cont & Jean-Philippe Bouchaud, 1997. "Herd behavior and aggregate fluctuations in financial markets," Science & Finance (CFM) working paper archive 500028, Science & Finance, Capital Fund Management.
    6. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    7. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    8. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    9. Farmer, J. Doyne & Joshi, Shareen, 2002. "The price dynamics of common trading strategies," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 149-171, October.
    10. Rama CONT & Jean-Philippe BOUCHAUD, 1997. "Herd behavior and aggregate fluctuations in financial markets," Finance 9712008, University Library of Munich, Germany, revised 06 Jan 1998.
    11. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    12. Lux, Thomas, 2008. "Applications of statistical physics in finance and economics," Kiel Working Papers 1425, Kiel Institute for the World Economy (IfW Kiel).
    13. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Eugene Stanley, H., 2008. "Quantifying and understanding the economics of large financial movements," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 303-319, January.
    14. Stanley, H.E. & Gopikrishnan, P. & Plerou, V. & Amaral, L.A.N., 2000. "Quantifying fluctuations in economic systems by adapting methods of statistical physics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 339-361.
    15. Alessio Emanuele Biondo, 2020. "Information versus imitation in a real-time agent-based model of financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(3), pages 613-631, July.
    16. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.
    17. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    18. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    19. Luis Goncalves de Faria, 2022. "An Agent-Based Model With Realistic Financial Time Series: A Method for Agent-Based Models Validation," Papers 2206.09772, arXiv.org.
    20. Rama Cont & Jean-Philippe Bouchaud, 1997. "Herd behavior and aggregate fluctuations in financial markets," Papers cond-mat/9712318, arXiv.org, revised Jan 1998.

    More about this item

    Keywords

    Volatility clustering; fat tails; trading volume; herd behaviour.;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0004007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.