IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

A Dynamic Structural Model for Stock Return Volatility and Trading Volume

Listed author(s):
  • William A. Brock
  • Blake D. LeBaron

This paper seeks to develop a structural model that lets data on asset returns and trading volume speak to whether volatility autocorrelation comes from the fundamental that the trading process is pricing or, is caused by the trading process itself. Returns and volume data argue, in the context of our model, that persistent volatility is caused by traders experimenting with different beliefs based upon past profit experience and their estimates of future profit experience. A major theme of our paper is to introduce adaptive agents in the spirit of Sargent (1993) but have them adapt their strategies on a time scale that is slower than the time scale on which the trading process takes place. This will lead to positive autocorrelation in volatility and volume on the time scale of the trading process which generates returns and volume data. Positive autocorrelation of volatility and volume is caused by persistence of strategy patterns that are associated with high volatility and high volume. Thee following features seen in the data: (i) The autocorrelation function of a measure of volatility such as squared returns or absolute value of returns is positive with a slowly decaying tail. (ii) The autocorrelation function of a measure of trading activity such as volume or turnover is positive with a slowly decaying tail. (iii) The cross correlation function of a measure of volatility such as squared returns is about zero for squared returns with past and future volumes and is positive for squared returns with current volumes. (iv) Abrupt changes in prices and returns occur which are hard to attach to 'news.' The last feature is obtained by a version of the model where the Law of Large Numbers fails in the large economy limit.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by National Bureau of Economic Research, Inc in its series NBER Working Papers with number 4988.

in new window

Date of creation: Jan 1995
Publication status: published as Review of Economics and Statistics, vol. LXXVIII, no. 1, February 1996, pp. 94-110
Handle: RePEc:nbr:nberwo:4988
Note: AP
Contact details of provider: Postal:
National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.

Phone: 617-868-3900
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:4988. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.