IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Reweighted least trimmed squares: an alternative to one-step estimators

  • Pavel Čížek


A new class of robust regression estimators is proposed that forms an alternative to traditional robust one-step estimators and that achieves the $\sqrt{n}$ rate of convergence irrespective of the initial estimator under a wide range of distributional assumptions. The proposed reweighted least trimmed squares (RLTS) estimator employs data-dependent weights determined from an initial robust fit. Just like many existing one- and two-step robust methods, the RLTS estimator preserves robust properties of the initial robust estimate. However contrary to existing methods, the first-order asymptotic behavior of RLTS is independent of the initial estimate even if errors exhibit heteroscedasticity, asymmetry, or serial correlation. Moreover, we derive the asymptotic distribution of RLTS and show that it is asymptotically efficient for normally distributed errors. A simulation study documents benefits of these theoretical properties in finite samples. Copyright Sociedad de Estadística e Investigación Operativa 2013

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Springer in its journal TEST.

Volume (Year): 22 (2013)
Issue (Month): 3 (September)
Pages: 514-533

in new window

Handle: RePEc:spr:testjl:v:22:y:2013:i:3:p:514-533
Contact details of provider: Web page:

Order Information: Web:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Badi H. Baltagi & Byoung Cheol Jung & Seuck Heun Song, 2008. "Testing for Heteroskedasticity and Serial Correlation in a Random Effects Panel Data Model," Center for Policy Research Working Papers 111, Center for Policy Research, Maxwell School, Syracuse University.
  2. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
  3. Nathan S. Balke & Thomas B. Fomby, 1991. "Large shocks, small shocks, and economic fluctuations: outliers in macroeconomic times series," Research Paper 9101, Federal Reserve Bank of Dallas.
  4. PREMINGER, Arie & FRANCK, Raphael, 2005. "Forecasting exchange rates: a robust regression approach," CORE Discussion Papers 2005025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  5. Jonathan R. W. Temple, 1998. "Robustness tests of the augmented Solow model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(4), pages 361-375.
  6. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
  7. J. Bradford De Long & Lawrence H. Summers, . "Equipment Investment and Economic Growth," J. Bradford De Long's Working Papers _122, University of California at Berkeley, Economics Department.
  8. Andrews, Donald W. K., 1987. "Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables," Working Papers 645, California Institute of Technology, Division of the Humanities and Social Sciences.
  9. Eric Engler & Bent Nielsen, 2007. "The empirical process of autoregressive residuals," Economics Series Working Papers 2007-W01, University of Oxford, Department of Economics.
  10. Woo, Jaejoon, 2003. "Economic, political, and institutional determinants of public deficits," Journal of Public Economics, Elsevier, vol. 87(3-4), pages 387-426, March.
  11. Shinichi Sakata & Halbert White, 1998. "High Breakdown Point Conditional Dispersion Estimation with Application to S&P 500 Daily Returns Volatility," Econometrica, Econometric Society, vol. 66(3), pages 529-568, May.
  12. Arcones, Miguel A., 1994. "The central limit theorem for U-processes indexed by Hölder's functions," Statistics & Probability Letters, Elsevier, vol. 20(1), pages 57-62, May.
  13. Zaman, Asad & Rousseeuw, Peter J. & Orhan, Mehmet, 2000. "Econometric applications of high-breakdown robust regression techniques," MPRA Paper 41529, University Library of Munich, Germany.
  14. Ronchetti, Elvezio & Trojani, Fabio, 2001. "Robust inference with GMM estimators," Journal of Econometrics, Elsevier, vol. 101(1), pages 37-69, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:22:y:2013:i:3:p:514-533. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

or (Christopher F Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.