IDEAS home Printed from https://ideas.repec.org/p/max/cprwps/111.html
   My bibliography  Save this paper

Testing for Heteroskedasticity and Serial Correlation in a Random Effects Panel Data Model

Author

Abstract

This paper considers a panel data regression model with heteroskedastic as well as serially correlated disturbances, and derives a joint LM test for homoskedasticity and no first order serial correlation. The restricted model is the standard random individual error component model. It also derives a conditional LM test for homoskedasticity given serial correlation, as well as a conditional LM test for no first order serial correlation given heteroskedasticity, all in the context of a random effects panel data model. Monte Carlo results show that these tests, along with their likelihood ratio alternatives, have good size and power under various forms of heteroskedasticity including exponential and quadratic functional forms.

Suggested Citation

  • Badi H. Baltagi & Byoung Cheol Jung & Seuck Heun Song, 2008. "Testing for Heteroskedasticity and Serial Correlation in a Random Effects Panel Data Model," Center for Policy Research Working Papers 111, Center for Policy Research, Maxwell School, Syracuse University.
  • Handle: RePEc:max:cprwps:111
    as

    Download full text from publisher

    File URL: http://www.maxwell.syr.edu/uploadedFiles/cpr/publications/working_papers2/wp111.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bera, Anil K. & Sosa-Escudero, Walter & Yoon, Mann, 2001. "Tests for the error component model in the presence of local misspecification," Journal of Econometrics, Elsevier, vol. 101(1), pages 1-23, March.
    2. Lillard, Lee A & Willis, Robert J, 1978. "Dynamic Aspects of Earning Mobility," Econometrica, Econometric Society, vol. 46(5), pages 985-1012, September.
    3. LEJEUNE, Bernard, 1996. "A Full Heteroscedastic One-Way Error Components Model for Incomplete Panel : Maximum Likelihood Estimation and Lagrange Multiplier Testing," CORE Discussion Papers 1996006, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Alberto HOLLY & Lucien GARDIOL, 1999. "A Score Test for Individual Heteroscedasticity in a One-way Error Components Model," Cahiers de Recherches Economiques du Département d'Econométrie et d'Economie politique (DEEP) 9915, Université de Lausanne, Faculté des HEC, DEEP.
    5. Baltagi, Badi H. & Jung, Byoung Cheol & Song, Seuck Heun, 2010. "Testing for heteroskedasticity and serial correlation in a random effects panel data model," Journal of Econometrics, Elsevier, vol. 154(2), pages 122-124, February.
    6. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," Review of Economic Studies, Oxford University Press, vol. 47(1), pages 239-253.
    7. Baltagi, Badi H. & Bresson, Georges & Pirotte, Alain, 2006. "Joint LM test for homoskedasticity in a one-way error component model," Journal of Econometrics, Elsevier, vol. 134(2), pages 401-417, October.
    8. Baltagi, Badi H. & Li, Qi, 1995. "Testing AR(1) against MA(1) disturbances in an error component model," Journal of Econometrics, Elsevier, vol. 68(1), pages 133-151, July.
    9. Nilanjana Roy, 2002. "Is Adaptive Estimation Useful For Panel Models With Heteroskedasticity In The Individual Specific Error Component? Some Monte Carlo Evidence," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 189-203.
    10. Magnus, J.R., 1982. "Multivariate error components analysis of linear and nonlinear regression models by maximum likelihood," Other publications TiSEM 9ffb33fe-f5af-470f-b405-f, Tilburg University, School of Economics and Management.
    11. repec:spr:adstae:978-3-540-75892-1 is not listed on IDEAS
    12. Magnus, Jan R., 1982. "Multivariate error components analysis of linear and nonlinear regression models by maximum likelihood," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 239-285, August.
    13. Li, Qi & Stengos, Thanasis, 1994. "Adaptive Estimation in the Panel Data Error Component Model with Heteroskedasticity of Unknown Form," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(4), pages 981-1000, November.
    14. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    15. Yongmiao Hong & Chihwa Kao, 2004. "Wavelet-Based Testing for Serial Correlation of Unknown Form in Panel Models," Econometrica, Econometric Society, vol. 72(5), pages 1519-1563, September.
    16. Galbraith, John W. & Zinde-Walsh, Victoria, 1995. "Transforming the error-components model for estimation with general ARMA disturbances," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 349-355.
    17. Baltagi, Badi H & Griffin, James M, 1988. "A Generalized Error Component Model with Heteroscedastic Disturbances," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 29(4), pages 745-753, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Packalen, Mikko & Wirjanto, Tony S., 2012. "Inference about clustering and parametric assumptions in covariance matrix estimation," Computational Statistics & Data Analysis, Elsevier, pages 1-14.
    2. Shao, Zhen & Gao, Fei & Zhang, Qiang & Yang, Shan-Lin, 2015. "Multivariate statistical and similarity measure based semiparametric modeling of the probability distribution: A novel approach to the case study of mid-long term electricity consumption forecasting i," Applied Energy, Elsevier, pages 502-518.
    3. Juhl, Ted & Sosa-Escudero, Walter, 2014. "Testing for heteroskedasticity in fixed effects models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 484-494.
    4. Shao, Zhen & Gao, Fei & Yang, Shan-Lin & Yu, Ben-gong, 2015. "A new semiparametric and EEMD based framework for mid-term electricity demand forecasting in China: Hidden characteristic extraction and probability density prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 876-889.
    5. Badi H. Baltagi & Byoung Cheol Jung & Seuck Heun Song, 2008. "Testing for Heteroskedasticity and Serial Correlation in a Random Effects Panel Data Model," Center for Policy Research Working Papers 111, Center for Policy Research, Maxwell School, Syracuse University.
    6. Baltagi, Badi H. & Jung, Byoung Cheol & Song, Seuck Heun, 2010. "Testing for heteroskedasticity and serial correlation in a random effects panel data model," Journal of Econometrics, Elsevier, vol. 154(2), pages 122-124, February.
    7. Montes-Rojas, Gabriel & Sosa-Escudero, Walter, 2011. "Robust tests for heteroskedasticity in the one-way error components model," Journal of Econometrics, Elsevier, pages 300-310.
    8. repec:hal:journl:peer-00768191 is not listed on IDEAS
    9. Wu, Jianhong & Li, Guodong, 2014. "Moment-based tests for individual and time effects in panel data models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 569-581.
    10. Gong, Pu & Weng, Yingliang, 2016. "Value-at-Risk forecasts by a spatiotemporal model in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 173-191.
    11. Pavel Čížek, 2013. "Reweighted least trimmed squares: an alternative to one-step estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 514-533, September.
    12. Natalia Drzewoszewska, 2016. "Związki przyczynowo-skutkowe między bilateralnymi przepływami handlu, bezpośrednich inwestycji zagranicznych i migracji w państwach rozwiniętych," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 41, pages 203-220.
    13. Amaresh Tiwari & Franz Palm, 2011. "Nonlinear Panel Data Models with Expected a Posteriori Values of Correlated Random Effects," CREPP Working Papers 1113, Centre de Recherche en Economie Publique et de la Population (CREPP) (Research Center on Public and Population Economics) HEC-Management School, University of Liège.

    More about this item

    Keywords

    Panel data; heteroskedasticity; serial correlation; Lagrange Multiplier tests; likelihood ratio; random effects;

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:max:cprwps:111. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Margaret Austin) or (Candi Patterson) or (Katrina Wingle). General contact details of provider: http://edirc.repec.org/data/cpsyrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.