IDEAS home Printed from https://ideas.repec.org/p/hhs/lunewp/2013_039.html
   My bibliography  Save this paper

A Simple Wavelet-Based Test for Serial Correlation in Panel Data Models

Author

Listed:

Abstract

Hong and Kao (2004) proposed a panel data test for serial correlation of unknown form. However, their test is computationally difficult to implement, and simulation studies show the test to have bad small-sample properties. We extend Gencay’s (2011) time series test for serial correlation to the panel data case in the framework proposed by Hong and Kao (2004). Our new test maintains the advantages of the Hong and Kao (2004) test, and it is simpler and easier to implement. Furthermore, simulation results show that our test has quicker convergence and hence better small-sample properties.

Suggested Citation

  • Li, Yushu & Andersson, Fredrik N. G., 2013. "A Simple Wavelet-Based Test for Serial Correlation in Panel Data Models," Working Papers 2013:39, Lund University, Department of Economics.
  • Handle: RePEc:hhs:lunewp:2013_039
    as

    Download full text from publisher

    File URL: http://project.nek.lu.se/publications/workpap/papers/WP13_39.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bera, Anil K. & Sosa-Escudero, Walter & Yoon, Mann, 2001. "Tests for the error component model in the presence of local misspecification," Journal of Econometrics, Elsevier, vol. 101(1), pages 1-23, March.
    2. A. Bhargava & L. Franzini & W. Narendranathan, 2006. "Serial Correlation and the Fixed Effects Model," World Scientific Book Chapters, in: Econometrics, Statistics And Computational Approaches In Food And Health Sciences, chapter 4, pages 61-77, World Scientific Publishing Co. Pte. Ltd..
    3. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," Review of Economic Studies, Oxford University Press, vol. 47(1), pages 239-253.
    4. Baltagi, Badi H. & Li, Qi, 1995. "Testing AR(1) against MA(1) disturbances in an error component model," Journal of Econometrics, Elsevier, vol. 68(1), pages 133-151, July.
    5. Hong, Yongmiao, 1996. "Consistent Testing for Serial Correlation of Unknown Form," Econometrica, Econometric Society, vol. 64(4), pages 837-864, July.
    6. Choi, In, 2001. "Unit root tests for panel data," Journal of International Money and Finance, Elsevier, vol. 20(2), pages 249-272, April.
    7. Yongmiao Hong & Chihwa Kao, 2004. "Wavelet-Based Testing for Serial Correlation of Unknown Form in Panel Models," Econometrica, Econometric Society, vol. 72(5), pages 1519-1563, September.
    8. Lee, Jin & Hong, Yongmiao, 2001. "Testing For Serial Correlation Of Unknown Form Using Wavelet Methods," Econometric Theory, Cambridge University Press, vol. 17(2), pages 386-423, April.
    9. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Croissant, Yves & Millo, Giovanni, 2008. "Panel Data Econometrics in R: The plm Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i02).
    2. Okui, Ryo, 2009. "Testing serial correlation in fixed effects regression models based on asymptotically unbiased autocorrelation estimators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2897-2909.
    3. Baltagi, Badi H. & Jung, Byoung Cheol & Song, Seuck Heun, 2010. "Testing for heteroskedasticity and serial correlation in a random effects panel data model," Journal of Econometrics, Elsevier, vol. 154(2), pages 122-124, February.
    4. Wu, Jianhong & Zhu, Lixing, 2011. "Testing for serial correlation and random effects in a two-way error component regression model," Economic Modelling, Elsevier, vol. 28(6), pages 2377-2386.
    5. Diego Martinez-Lopez, 2006. "Linking Public Investment to Private Investment. The Case of Spanish Regions," International Review of Applied Economics, Taylor & Francis Journals, vol. 20(4), pages 411-423.
    6. Federico Zincenko & Walter Sosa-Escudero & Gabriel Montes-Rojas, 2014. "Robust tests for time-invariant individual heterogeneity versus dynamic state dependence," Empirical Economics, Springer, vol. 47(4), pages 1365-1387, December.
    7. Du, Zaichao, 2014. "Testing for serial independence of panel errors," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 248-261.
    8. Hajamini, Mehdi & Falahi, Mohammad Ali, 2018. "Economic growth and government size in developed European countries: A panel threshold approach," Economic Analysis and Policy, Elsevier, vol. 58(C), pages 1-13.
    9. Li, Linyuan & Yao, Shan & Duchesne, Pierre, 2014. "On wavelet-based testing for serial correlation of unknown form using Fan’s adaptive Neyman method," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 308-327.
    10. Goya, Daniel, 2020. "The exchange rate and export variety: A cross-country analysis with long panel estimators," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 649-665.
    11. Saadaoui, Jamel, 2012. "Déséquilibres globaux, taux de change d’équilibre et modélisation stock-flux cohérente [Global Imbalances, Equilibrium Exchange Rates and Stock-Flow Consistent Modelling]," MPRA Paper 51332, University Library of Munich, Germany.
    12. Gençay, Ramazan & Signori, Daniele, 2015. "Multi-scale tests for serial correlation," Journal of Econometrics, Elsevier, vol. 184(1), pages 62-80.
    13. R. Golinelli & I. Mammi & A. Musolesi, 2018. "Parameter heterogeneity, persistence and cross-sectional dependence: new insights on fiscal policy reaction functions for the Euro area," Working Papers wp1120, Dipartimento Scienze Economiche, Universita' di Bologna.
    14. Hajamini, Mehdi, 2015. "The non-linear effect of population growth and linear effect of age structure on per capita income: A threshold dynamic panel structural model," Economic Analysis and Policy, Elsevier, vol. 46(C), pages 43-58.
    15. De Blander, Rembert, 2020. "Iterative estimation correcting for error auto-correlation in short panels, applied to lagged dependent variable models," Econometrics and Statistics, Elsevier, vol. 15(C), pages 3-29.
    16. Lee, Hyunchul & Kim, Heeho, 2020. "Time varying integration of European stock markets and monetary drivers," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 369-385.
    17. Le, Thai-Ha & Tran-Nam, Binh, 2018. "Relative costs and FDI: Why did Vietnam forge so far ahead?," Economic Analysis and Policy, Elsevier, vol. 59(C), pages 1-13.
    18. Hany Eldemerdash & Hugh Metcalf & Sara Maioli, 2014. "Twin deficits: new evidence from a developing (oil vs. non-oil) countries’ perspective," Empirical Economics, Springer, vol. 47(3), pages 825-851, November.
    19. Huy Quang Doan, 2019. "Trade, Institutional Quality and Income: Empirical Evidence for Sub-Saharan Africa," Economies, MDPI, Open Access Journal, vol. 7(2), pages 1-1, May.
    20. Gregorio Giménez Esteban, 2007. "Violence and Growth in Latin America," Economic Analysis Working Papers (2002-2010). Atlantic Review of Economics (2011-2016), Colexio de Economistas de A Coruña, Spain and Fundación Una Galicia Moderna, vol. 6, pages 1-34, July.

    More about this item

    Keywords

    energy distribution; MODWT; serial correlation; static and dynamic panel models;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:lunewp:2013_039. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David Edgerton). General contact details of provider: http://edirc.repec.org/data/delunse.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.