IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v76y2014icp248-261.html
   My bibliography  Save this article

Testing for serial independence of panel errors

Author

Listed:
  • Du, Zaichao

Abstract

A test for the serial independence of errors in panel data models is proposed. The test is based on the difference between the joint empirical characteristic function of residuals at different lags and the product of their marginal empirical characteristic functions. The test is nuisance-parameter-free and powerful against any type of pairwise dependence at all lags. A simple random permutation procedure is used to approximate the limit distribution of the test. A Monte Carlo experiment illustrates the finite sample performance of the test, and supports that the test statistic based on the estimated residuals has the same asymptotic distribution as the corresponding statistic based on the unobservable true errors.

Suggested Citation

  • Du, Zaichao, 2014. "Testing for serial independence of panel errors," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 248-261.
  • Handle: RePEc:eee:csdana:v:76:y:2014:i:c:p:248-261 DOI: 10.1016/j.csda.2013.07.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313002764
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Inoue, Atsushi & Solon, Gary, 2006. "A Portmanteau Test For Serially Correlated Errors In Fixed Effects Models," Econometric Theory, Cambridge University Press, vol. 22(05), pages 835-851, October.
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, pages 1455-1508.
    3. Donald J. Brown & Marten H. Wegkamp, 2002. "Weighted Minimum Mean-Square Distance from Independence Estimation," Econometrica, Econometric Society, pages 2035-2051.
    4. Escanciano, Juan Carlos & Jacho-Chávez, David T., 2010. "Approximating the critical values of Cramér-von Mises tests in general parametric conditional specifications," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 625-636, March.
    5. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    6. Shin, Dong Wan & Park, Soo Jung & Oh, Man-Suk, 2009. "A robust sign test for panel unit roots under cross sectional dependence," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1312-1327, February.
    7. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," Review of Economic Studies, Oxford University Press, vol. 47(1), pages 239-253.
    8. Baltagi, Badi H. & Song, Seuck Heun & Kwon, Jae Hyeok, 2009. "Testing for heteroskedasticity and spatial correlation in a random effects panel data model," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2897-2922, June.
    9. Hendry, David F., 1995. "Dynamic Econometrics," OUP Catalogue, Oxford University Press, number 9780198283164.
    10. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    11. Okui, Ryo, 2009. "Testing serial correlation in fixed effects regression models based on asymptotically unbiased autocorrelation estimators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2897-2909.
    12. Yongmiao Hong & Chihwa Kao, 2004. "Wavelet-Based Testing for Serial Correlation of Unknown Form in Panel Models," Econometrica, Econometric Society, vol. 72(5), pages 1519-1563, September.
    13. Yongmiao Hong, 2000. "Generalized spectral tests for serial dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 557-574.
    14. Baltagi, Badi H. & Bresson, Georges & Pirotte, Alain, 2012. "Forecasting with spatial panel data," Computational Statistics & Data Analysis, Elsevier, pages 3381-3397.
    15. Escanciano, J. Carlos, 2007. "Weak convergence of non-stationary multivariate marked processes with applications to martingale testing," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1321-1336, August.
    16. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
    17. de PERETTI, PHILIPPE, 2005. "Testing The Significance Of The Departures From Utility Maximization," Macroeconomic Dynamics, Cambridge University Press, vol. 9(03), pages 372-397, June.
    18. Ng, Serena, 2006. "Testing Cross-Section Correlation in Panel Data Using Spacings," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 12-23, January.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:76:y:2014:i:c:p:248-261. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.