IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Weak convergence of non-stationary multivariate marked processes with applications to martingale testing

  • Escanciano, J. Carlos

This paper establishes the weak convergence of a class of marked empirical processes of possibly non-stationary and/or non-ergodic multivariate time series sequences under martingale conditions. The assumptions involved are similar to those in Brown's martingale central limit theorem. In particular, no mixing conditions are imposed. As an application, we propose a test statistic for the martingale hypothesis and we derive its asymptotic null distribution. Finally, a Monte Carlo study shows that the asymptotic results provide good approximations for small and moderate sample sizes. An application to the S&P 500 is also considered.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Multivariate Analysis.

Volume (Year): 98 (2007)
Issue (Month): 7 (August)
Pages: 1321-1336

in new window

Handle: RePEc:eee:jmvana:v:98:y:2007:i:7:p:1321-1336
Contact details of provider: Web page:

Order Information: Postal:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Joon Y. Park & Peter C. B. Phillips, 1999. "Nonlinear Regressions with Integrated Time Series," Working Paper Series no6, Institute of Economic Research, Seoul National University.
  2. J. Carlos Escanciano & Carlos Velasco, 2003. "Generalized Spectral Tests For The Martingale Difference Hypothesis," Statistics and Econometrics Working Papers ws035212, Universidad Carlos III, Departamento de Estadística y Econometría.
  3. Deo, Rohit S., 2000. "Spectral tests of the martingale hypothesis under conditional heteroscedasticity," Journal of Econometrics, Elsevier, vol. 99(2), pages 291-315, December.
  4. Bierens, Herman J., 1982. "Consistent model specification tests," Journal of Econometrics, Elsevier, vol. 20(1), pages 105-134, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:7:p:1321-1336. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.