IDEAS home Printed from https://ideas.repec.org/p/una/unccee/wp0107.html
   My bibliography  Save this paper

Data-Driven Smooth Tests for the Martingale Difference Hypothesis

Author

Listed:
  • Juan Carlos Escanciano

    () (Indiana University)

  • Silvia Mayoral

    () (Universidad de Navarra)

Abstract

A general method for testing the martingale difference hypothesis is proposed. The new tests are data-driven smooth tests based on the principal components of certain marked empirical processes that are asymptotically distribution-free, with critical values that are already tabulated. The data-driven smooth tests are optimal in a semiparametric sense discussed in the paper, and they are robust to conditional heteroskedasticity of unknown form. A simulation study shows that the smooth tests perform very well for a wide range of realistic alternatives and have more power than the omnibus and other competing tests. Finally, an application to the S&P 500 stock index and some of its components highlights the merits of our approach.

Suggested Citation

  • Juan Carlos Escanciano & Silvia Mayoral, 2007. "Data-Driven Smooth Tests for the Martingale Difference Hypothesis," Faculty Working Papers 01/07, School of Economics and Business Administration, University of Navarra.
  • Handle: RePEc:una:unccee:wp0107
    as

    Download full text from publisher

    File URL: http://www.unav.edu/documents/10174/6546776/1170333590_wp0107.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Escanciano, J. Carlos & Velasco, Carlos, 2006. "Testing the martingale difference hypothesis using integrated regression functions," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2278-2294, December.
    2. Escanciano, J. Carlos & Velasco, Carlos, 2006. "Generalized spectral tests for the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 134(1), pages 151-185, September.
    3. Escanciano, J. Carlos & Lobato, Ignacio N., 2009. "An automatic Portmanteau test for serial correlation," Journal of Econometrics, Elsevier, vol. 151(2), pages 140-149, August.
    4. Hervé Cardot, 2003. "Testing Hypotheses in the Functional Linear Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 241-255.
    5. George Kapetanios & Andrew P. Blake, 2007. "Testing the Martingale Difference Hypothesis Using Neural Network Approximations," Working Papers 601, Queen Mary University of London, School of Economics and Finance.
    6. Ferreira, E. & Stute, W., 2004. "Testing for Differences Between Conditional Means in a Time Series Context," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 169-174, January.
    7. Linton, O. & Whang, Yoon-Jae, 2007. "The quantilogram: With an application to evaluating directional predictability," Journal of Econometrics, Elsevier, vol. 141(1), pages 250-282, November.
    8. Hsieh, David A, 1989. "Testing for Nonlinear Dependence in Daily Foreign Exchange Rates," The Journal of Business, University of Chicago Press, vol. 62(3), pages 339-368, July.
    9. Durlauf, Steven N., 1991. "Spectral based testing of the martingale hypothesis," Journal of Econometrics, Elsevier, vol. 50(3), pages 355-376, December.
    10. Juan Carlos Escanciano, 2005. "On the Asymptotic Power Properties of Specification Tests for Dynamic Parametric Regressions," Faculty Working Papers 07/05, School of Economics and Business Administration, University of Navarra.
    11. Deo, Rohit S., 2000. "Spectral tests of the martingale hypothesis under conditional heteroscedasticity," Journal of Econometrics, Elsevier, vol. 99(2), pages 291-315, December.
    12. Escanciano, J. Carlos, 2009. "On The Lack Of Power Of Omnibus Specification Tests," Econometric Theory, Cambridge University Press, vol. 25(01), pages 162-194, February.
    13. Stute, W. & Presedo Quindimil, M. & González Manteiga, W. & Koul, H.L., 2006. "Model checks of higher order time series," Statistics & Probability Letters, Elsevier, vol. 76(13), pages 1385-1396, July.
    14. Escanciano, J. Carlos, 2006. "Goodness-of-Fit Tests for Linear and Nonlinear Time Series Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 531-541, June.
    15. Fan J. & Huang L-S., 2001. "Goodness-of-Fit Tests for Parametric Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 640-652, June.
    16. Manuel A. Dominguez & Ignacio N. Lobato, 2001. "A Consistent Test for the Martingale Difference Hypothesis," Working Papers 0101, Centro de Investigacion Economica, ITAM.
    17. Winfried Stute, 2002. "Model Checks for Generalized Linear Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 535-545.
    18. Guay, Alain & Guerre, Emmanuel, 2006. "A Data-Driven Nonparametric Specification Test For Dynamic Regression Models," Econometric Theory, Cambridge University Press, vol. 22(04), pages 543-586, August.
    19. R. L. Eubank, 2000. "Testing for No Effect by Cosine Series Methods," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 747-763.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teresa Ledwina & Grzegorz Wyłupek, 2012. "Nonparametric tests for stochastic ordering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 730-756, December.
    2. Hsu, Shih-Hsun & Kuan, Chung-Ming, 2014. "Constructing smooth tests without estimating the eigenpairs of the limiting process," Journal of Econometrics, Elsevier, vol. 178(P1), pages 71-79.
    3. Escanciano, J. Carlos & Lobato, Ignacio N., 2009. "An automatic Portmanteau test for serial correlation," Journal of Econometrics, Elsevier, vol. 151(2), pages 140-149, August.
    4. Huang, Henry H. & Wang, Kent & Wang, Zhanglong, 2016. "A test of efficiency for the S&P 500 index option market using the generalized spectrum method," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 52-70.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:una:unccee:wp0107. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.unav.edu/web/facultad-de-ciencias-economicas-y-empresariales .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.