IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v9y2019icp17-41.html
   My bibliography  Save this article

Robust analysis of the martingale hypothesis

Author

Listed:
  • Gourieroux, Christian
  • Jasiak, Joann

Abstract

The martingale hypothesis is commonly tested in financial and economic time series. The existing tests of the martingale hypothesis aim at detecting some aspects of nonstationarity, which is considered an inherent feature of a martingale process. However, there exists a variety of martingale processes, some of which are nonstationary like the well-known random walks, and others are stationary with fat-tailed marginal distributions. The stationary martingales display local trends and bubbles, and can feature volatility induced “mean-reversion”, like many observed financial and economic time series. This paper introduces nonparametric tests of the martingale hypothesis, which are robust to the type of martingale process that generated the data and are valid for nonstationary as well as stationary martingales. A new regenerative block bootstrap is introduced as an adjustment method for size distortion of the test in finite sample.

Suggested Citation

  • Gourieroux, Christian & Jasiak, Joann, 2019. "Robust analysis of the martingale hypothesis," Econometrics and Statistics, Elsevier, vol. 9(C), pages 17-41.
  • Handle: RePEc:eee:ecosta:v:9:y:2019:i:c:p:17-41
    DOI: 10.1016/j.ecosta.2018.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306218300479
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2018.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hall, Robert E, 1978. "Stochastic Implications of the Life Cycle-Permanent Income Hypothesis: Theory and Evidence," Journal of Political Economy, University of Chicago Press, vol. 86(6), pages 971-987, December.
    2. Jiti Gao & Maxwell King, 2012. "An Improved Nonparametric Unit-Root Test," Monash Econometrics and Business Statistics Working Papers 16/12, Monash University, Department of Econometrics and Business Statistics.
    3. Dong Li & Shiqing Ling & Rongmao Zhang, 2016. "On a Threshold Double Autoregressive Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 68-80, January.
    4. Deo, Rohit S., 2000. "Spectral tests of the martingale hypothesis under conditional heteroscedasticity," Journal of Econometrics, Elsevier, vol. 99(2), pages 291-315, December.
    5. Chen, Willa W. & Deo, Rohit S., 2006. "The Variance Ratio Statistic At Large Horizons," Econometric Theory, Cambridge University Press, vol. 22(2), pages 206-234, April.
    6. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    7. repec:cdl:ucsbec:13-89 is not listed on IDEAS
    8. Li, Qi, 1999. "Consistent model specification tests for time series econometric models," Journal of Econometrics, Elsevier, vol. 92(1), pages 101-147, September.
    9. J. Carlos Escanciano & Ignacio N. Lobato, 2009. "Testing the Martingale Hypothesis," Palgrave Macmillan Books, in: Terence C. Mills & Kerry Patterson (ed.), Palgrave Handbook of Econometrics, chapter 20, pages 972-1003, Palgrave Macmillan.
    10. Escanciano, J. Carlos & Lobato, Ignacio N., 2009. "An automatic Portmanteau test for serial correlation," Journal of Econometrics, Elsevier, vol. 151(2), pages 140-149, August.
    11. Davidson, Russell & MacKinnon, James G., 1999. "The Size Distortion Of Bootstrap Tests," Econometric Theory, Cambridge University Press, vol. 15(3), pages 361-376, June.
    12. Yongmiao Hong & Yoon-Jin Lee, 2005. "Generalized Spectral Tests for Conditional Mean Models in Time Series with Conditional Heteroscedasticity of Unknown Form," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(2), pages 499-541.
    13. Escanciano, J. Carlos & Velasco, Carlos, 2006. "Generalized spectral tests for the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 134(1), pages 151-185, September.
    14. Wright, Jonathan H, 2000. "Alternative Variance-Ratio Tests Using Ranks and Signs," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 1-9, January.
    15. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    16. Christian Gouriéroux & Jean-Michel Zakoïan, 2017. "Local explosion modelling by non-causal process," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 737-756, June.
    17. Conley, Timothy G, et al, 1997. "Short-Term Interest Rates as Subordinated Diffusions," The Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 525-577.
    18. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    19. Shiqing Ling, 2004. "Estimation and testing stationarity for double‐autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 63-78, February.
    20. Dedecker, Jérôme & Prieur, Clémentine, 2007. "An empirical central limit theorem for dependent sequences," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 121-142, January.
    21. LeRoy, Stephen F, 1989. "Efficient Capital Markets and Martingales," Journal of Economic Literature, American Economic Association, vol. 27(4), pages 1583-1621, December.
    22. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    23. Guay, Alain & Guerre, Emmanuel, 2006. "A Data-Driven Nonparametric Specification Test For Dynamic Regression Models," Econometric Theory, Cambridge University Press, vol. 22(4), pages 543-586, August.
    24. Gourieroux, Christian & Jasiak, Joann, 2018. "Misspecification of noncausal order in autoregressive processes," Journal of Econometrics, Elsevier, vol. 205(1), pages 226-248.
    25. Wu, Wei Biao & Huang, Yinxiao & Huang, Yibi, 2010. "Kernel estimation for time series: An asymptotic theory," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2412-2431, December.
    26. Peter C.B. Phillips & Joon Y. Park, 1998. "Nonstationary Density Estimation and Kernel Autoregression," Cowles Foundation Discussion Papers 1181, Cowles Foundation for Research in Economics, Yale University.
    27. Durlauf, Steven N., 1991. "Spectral based testing of the martingale hypothesis," Journal of Econometrics, Elsevier, vol. 50(3), pages 355-376, December.
    28. Myklebust, Terje & Karlsen, Hans Arnfinn & Tjøstheim, Dag, 2012. "Null Recurrent Unit Root Processes," Econometric Theory, Cambridge University Press, vol. 28(1), pages 1-41, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Djogbenou, Antoine & Inan, Emre & Jasiak, Joann, 2023. "Time-varying coefficient DAR model and stability measures for stablecoin prices: An application to Tether," Journal of International Money and Finance, Elsevier, vol. 139(C).
    2. Christian Gourieroux & Joann Jasiak & Michelle Tong, 2021. "Convolution‐based filtering and forecasting: An application to WTI crude oil prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1230-1244, November.
    3. Cerruti, Gianluca & Lombardini, Simone, 2022. "Financial bubbles as a recursive process lead by short-term strategies," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 555-568.
    4. Maynard, Alex & Ren, Dongmeng, 2019. "The finite sample power of long-horizon predictive tests in models with financial bubbles," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 418-430.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter C. B. Phillips & Sainan Jin, 2014. "Testing the Martingale Hypothesis," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 537-554, October.
    2. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2012. "Exchange-rate return predictability and the adaptive markets hypothesis: Evidence from major foreign exchange rates," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1607-1626.
    3. Xuexin WANG, 2021. "Generalized Spectral Tests for High Dimensional Multivariate Martingale Difference Hypotheses," Working Papers 2021-11-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    4. Chang, Jinyuan & Jiang, Qing & Shao, Xiaofeng, 2023. "Testing the martingale difference hypothesis in high dimension," Journal of Econometrics, Elsevier, vol. 235(2), pages 972-1000.
    5. Charles, Amélie & Darné, Olivier & Fouilloux, Jessica, 2011. "Testing the martingale difference hypothesis in CO2 emission allowances," Economic Modelling, Elsevier, vol. 28(1), pages 27-35.
    6. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    7. Zdeněk Hlávka & Marie Hušková & Claudia Kirch & Simos G. Meintanis, 2017. "Fourier--type tests involving martingale difference processes," Econometric Reviews, Taylor & Francis Journals, vol. 36(4), pages 468-492, April.
    8. Hill, Jonathan B. & Motegi, Kaiji, 2019. "Testing the white noise hypothesis of stock returns," Economic Modelling, Elsevier, vol. 76(C), pages 231-242.
    9. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    10. Verheyden, Tim & De Moor, Lieven & Van den Bossche, Filip, 2015. "Towards a new framework on efficient markets," Research in International Business and Finance, Elsevier, vol. 34(C), pages 294-308.
    11. Kim, Jae & Doucouliagos, Hristos & Stanley, T. D., 2014. "Market efficiency in Asian and Australasian stock markets: a fresh look at the evidence," Working Papers eco_2014_9, Deakin University, Department of Economics.
    12. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    13. Aggarwal, Divya, 2019. "Do bitcoins follow a random walk model?," Research in Economics, Elsevier, vol. 73(1), pages 15-22.
    14. Escanciano, Juan Carlos & Mayoral, Silvia, 2010. "Data-driven smooth tests for the martingale difference hypothesis," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1983-1998, August.
    15. Seok Young Hong & Oliver Linton & Hui Jun Zhang, 2015. "An investigation into Multivariate Variance Ratio Statistics and their application to Stock Market Predictability," Cambridge Working Papers in Economics 1552, Faculty of Economics, University of Cambridge.
    16. Ke Zhu, 2016. "Bootstrapping the portmanteau tests in weak auto-regressive moving average models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 463-485, March.
    17. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    18. Seok Young Hong & Oliver Linton & Hui Jun Zhang, 2015. "An investigation into multivariate variance ratio statistics and their application to stock market predictability," CeMMAP working papers 13/15, Institute for Fiscal Studies.
    19. Dilip Kumar & Srinivasan Maheswaran, 2014. "Are major global stock markets efficient? An application of the martingale difference hypothesis with wild bootstrap," American Journal of Finance and Accounting, Inderscience Enterprises Ltd, vol. 3(2/3/4), pages 217-233.
    20. Escanciano, J. Carlos & Velasco, Carlos, 2006. "Testing the martingale difference hypothesis using integrated regression functions," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2278-2294, December.

    More about this item

    Keywords

    Martingale hypothesis; Market efficiency; Recurrence; Splitting technique; Noncausal process; Stationary martingale; Nadaraya–Watson estimator; Regenerative block bootstrap;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:9:y:2019:i:c:p:17-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.