IDEAS home Printed from https://ideas.repec.org/p/ise/remwps/wp03742025.html
   My bibliography  Save this paper

A deep learning test of the martingale difference hypothesis

Author

Listed:
  • João A. Bastos

Abstract

A deep learning binary classifier is proposed to test if asset returns follow martingale difference sequences. The Neyman-Pearson classification paradigm is applied to control the type I error of the test. In Monte Carlo simulations, I find that this approach has better power properties than variance ratio and portmanteau tests against several alternative processes. I apply this procedure to a large set of exchange rate returns and find that it detects several potential deviations from the martingale difference hypothesis that the conventional statistical tests fail to capture.

Suggested Citation

  • João A. Bastos, 2025. "A deep learning test of the martingale difference hypothesis," Working Papers REM 2025/0374, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
  • Handle: RePEc:ise:remwps:wp03742025
    as

    Download full text from publisher

    File URL: https://rem.rc.iseg.ulisboa.pt/wps/pdf/REM_WP_0374_2025.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chow, K. Victor & Denning, Karen C., 1993. "A simple multiple variance ratio test," Journal of Econometrics, Elsevier, vol. 58(3), pages 385-401, August.
    2. Chen, Willa W. & Deo, Rohit S., 2006. "The Variance Ratio Statistic At Large Horizons," Econometric Theory, Cambridge University Press, vol. 22(2), pages 206-234, April.
    3. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    4. Choi, In, 1999. "Testing the Random Walk Hypothesis for Real Exchange Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(3), pages 293-308, May-June.
    5. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2011. "Small sample properties of alternative tests for martingale difference hypothesis," Economics Letters, Elsevier, vol. 110(2), pages 151-154, February.
    6. Jae H. Kim & Abul Shamsuddin, 2015. "A closer look at return predictability of the US stock market: evidence from new panel variance ratio tests," Quantitative Finance, Taylor & Francis Journals, vol. 15(9), pages 1501-1514, September.
    7. Escanciano, J. Carlos & Velasco, Carlos, 2006. "Generalized spectral tests for the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 134(1), pages 151-185, September.
    8. Escanciano, J. Carlos & Lobato, Ignacio N., 2009. "An automatic Portmanteau test for serial correlation," Journal of Econometrics, Elsevier, vol. 151(2), pages 140-149, August.
    9. Kim, Jae H., 2006. "Wild bootstrapping variance ratio tests," Economics Letters, Elsevier, vol. 92(1), pages 38-43, July.
    10. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    11. Kim, Jae H., 2009. "Automatic variance ratio test under conditional heteroskedasticity," Finance Research Letters, Elsevier, vol. 6(3), pages 179-185, September.
    12. Manuel Dominguez & Ignacio Lobato, 2003. "Testing the Martingale Difference Hypothesis," Econometric Reviews, Taylor & Francis Journals, vol. 22(4), pages 351-377.
    13. João A. Bastos & Jorge Caiado, 2021. "On the classification of financial data with domain agnostic features," Working Papers REM 2021/0185, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    2. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2012. "Exchange-rate return predictability and the adaptive markets hypothesis: Evidence from major foreign exchange rates," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1607-1626.
    3. Kim, Jae & Doucouliagos, Hristos & Stanley, T. D., 2014. "Market efficiency in Asian and Australasian stock markets: a fresh look at the evidence," Working Papers eco_2014_9, Deakin University, Department of Economics.
    4. Peter C. B. Phillips & Sainan Jin, 2014. "Testing the Martingale Hypothesis," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 537-554, October.
    5. Verheyden, Tim & De Moor, Lieven & Van den Bossche, Filip, 2015. "Towards a new framework on efficient markets," Research in International Business and Finance, Elsevier, vol. 34(C), pages 294-308.
    6. Charles, Amélie & Darné, Olivier & Fouilloux, Jessica, 2011. "Testing the martingale difference hypothesis in CO2 emission allowances," Economic Modelling, Elsevier, vol. 28(1), pages 27-35.
    7. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    8. Xuexin WANG, 2021. "Generalized Spectral Tests for High Dimensional Multivariate Martingale Difference Hypotheses," Working Papers 2021-11-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    9. Akbar, Muhammad & Ullah, Ihsan & Ali, Shahid & Rehman, Naser, 2024. "Adaptive market hypothesis: A comparison of Islamic and conventional stock indices," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 460-477.
    10. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2011. "Small sample properties of alternative tests for martingale difference hypothesis," Economics Letters, Elsevier, vol. 110(2), pages 151-154, February.
    11. Amélie Charles & Olivier Darné & Jae H. Kim, 2014. "Precious metals shine? A market efficiency perspective," Working Papers hal-01010516, HAL.
    12. Md Lutfur Rahman & Mahbub Khan & Samuel A. Vigne & Gazi Salah Uddin, 2021. "Equity return predictability, its determinants, and profitable trading strategies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 162-186, January.
    13. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2015. "Will precious metals shine? A market efficiency perspective," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 284-291.
    14. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Risk prediction management and weak form market efficiency in Eurozone financial crisis," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 384-393.
    15. Amélie Charles & Olivier Darné & Jessica Fouilloux, 2010. "Testing the Martingale Difference Hypothesis in the EU ETS Markets for the CO2 Emission Allowances: Evidence from Phase I and Phase II," Post-Print hal-00797491, HAL.
    16. Zdeněk Hlávka & Marie Hušková & Claudia Kirch & Simos G. Meintanis, 2017. "Fourier--type tests involving martingale difference processes," Econometric Reviews, Taylor & Francis Journals, vol. 36(4), pages 468-492, April.
    17. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    18. Kim, Jae H. & Shamsuddin, Abul & Lim, Kian-Ping, 2011. "Stock return predictability and the adaptive markets hypothesis: Evidence from century-long U.S. data," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 868-879.
    19. Omid Sabbaghi & Navid Sabbaghi, 2017. "The Chicago Climate Exchange and market efficiency: an empirical analysis," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(4), pages 711-734, October.
    20. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2017. "Adaptive markets hypothesis for Islamic stock indices: Evidence from Dow Jones size and sector-indices," International Economics, Elsevier, vol. 151(C), pages 100-112.

    More about this item

    Keywords

    Martingale difference hypothesis; Convolutional network; Variance ratio test; Portmanteau test; Exchange rates.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ise:remwps:wp03742025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sandra Araújo (email available below). General contact details of provider: https://rem.rc.iseg.ulisboa.pt/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.