IDEAS home Printed from
   My bibliography  Save this article

Nonparametric tests for stochastic ordering


  • Teresa Ledwina


  • Grzegorz Wyłupek


We present two new tests for stochastic ordering in a standard two-sample scheme. We approach the problem via its reparametrization in terms of Fourier coefficients in some corresponding system of functions and combining the resulting empirical Fourier coefficients. The empirical Fourier coefficients can be seen to be the asymptotically optimal linear rank statistics for the local sequences of nonparametric alternatives related to the introduced system of functions. Therefore, our first construction of the test is via multiple testing. The second test is based on sum of squares of censored empirical Fourier coefficients with the number of summands determined via a new model selection rule. The selection rule is fully automatic. Extensive simulations show that the new solutions improve upon existing tests based on adjusted variants of classical Kolmogorov–Smirnov, Anderson–Darling and L 1 -distance-based statistics, among others. We show that both tests control the error of the first kind for any fixed sample sizes and are capable of detecting essentially any alternative as the sample sizes are growing to infinity. We also discuss several aspects of our constructions, including possible efficiency calculations and asymptotic comparisons. Copyright Sociedad de Estadística e Investigación Operativa 2012

Suggested Citation

  • Teresa Ledwina & Grzegorz Wyłupek, 2012. "Nonparametric tests for stochastic ordering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 730-756, December.
  • Handle: RePEc:spr:testjl:v:21:y:2012:i:4:p:730-756
    DOI: 10.1007/s11749-011-0278-7

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Garry F. Barrett & Stephen G. Donald, 2003. "Consistent Tests for Stochastic Dominance," Econometrica, Econometric Society, vol. 71(1), pages 71-104, January.
    2. Escanciano, J. Carlos & Lobato, Ignacio N., 2009. "An automatic Portmanteau test for serial correlation," Journal of Econometrics, Elsevier, vol. 151(2), pages 140-149, August.
    3. Escanciano, Juan Carlos & Mayoral, Silvia, 2010. "Data-driven smooth tests for the martingale difference hypothesis," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1983-1998, August.
    4. Russell Davidson & Jean-Yves Duclos, 2000. "Statistical Inference for Stochastic Dominance and for the Measurement of Poverty and Inequality," Econometrica, Econometric Society, vol. 68(6), pages 1435-1464, November.
    5. Anderson, Gordon, 1996. "Nonparametric Tests of Stochastic Dominance in Income Distributions," Econometrica, Econometric Society, vol. 64(5), pages 1183-1193, September.
    6. Fan J. & Huang L-S., 2001. "Goodness-of-Fit Tests for Parametric Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 640-652, June.
    7. Christensen, Ronald & Sun, Siu Kei, 2010. "Alternative Goodness-of-Fit Tests for Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 291-301.
    8. R. L. Eubank, 2000. "Testing for No Effect by Cosine Series Methods," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 747-763.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Hammou El Barmi & Ian W. McKeague, 2016. "Testing for uniform stochastic ordering via empirical likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(5), pages 955-976, October.
    2. Ledwina, Teresa & Wyłupek, Grzegorz, 2014. "Validation of positive quadrant dependence," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 38-47.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:21:y:2012:i:4:p:730-756. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.