IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00732534.html
   My bibliography  Save this paper

Specification tests of parametric dynamic conditional quantiles

Author

Listed:
  • J. Carlos Escanciano

    () (Economics Department - Indiana University [Bloomington])

  • Carlos Velasco

    () (Departamento de Economía. Universidad Carlos III de Madrid. Calle Madrid 126 - Departamento de Economía. Universidad Carlos III de Madrid. Calle Madrid 126)

Abstract

This article proposes omnibus specification tests of parametric dynamic quantile models. Contrary to the existing procedures, we allow for a flexible specification, where a possibly continuum of quantiles are simultaneously specified under fairly weak conditions on the serial dependence in the underlying data generating process. Since the null limit distribution of tests is not pivotal, we propose a subsampling approximation of the asymptotic critical values. A Monte Carlo study shows that the asymptotic results provide good approximations for small sample sizes. Finally, an application suggests that our methodology is a powerful alternative to standard backtesting procedures in evaluating market risk.

Suggested Citation

  • J. Carlos Escanciano & Carlos Velasco, 2010. "Specification tests of parametric dynamic conditional quantiles," Post-Print hal-00732534, HAL.
  • Handle: RePEc:hal:journl:hal-00732534
    DOI: 10.1016/j.jeconom.2010.06.003
    Note: View the original document on HAL open archive server: https://hal.archives-ouvertes.fr/hal-00732534
    as

    Download full text from publisher

    File URL: https://hal.archives-ouvertes.fr/hal-00732534/document
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Komunjer, Ivana, 2005. "Quasi-maximum likelihood estimation for conditional quantiles," Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.
    2. He X. & Hu F., 2002. "Markov Chain Marginal Bootstrap," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 783-795, September.
    3. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
    4. Joel L. Horowitz, 1998. "Bootstrap Methods for Median Regression Models," Econometrica, Econometric Society, vol. 66(6), pages 1327-1352, November.
    5. Horowitz J.L. & Spokoiny V.G., 2002. "An Adaptive, Rate-Optimal Test of Linearity for Median Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 822-835, September.
    6. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    7. Herman J. Bierens & Werner Ploberger, 1997. "Asymptotic Theory of Integrated Conditional Moment Tests," Econometrica, Econometric Society, vol. 65(5), pages 1129-1152, September.
    8. Donald W. K. Andrews, 1997. "A Conditional Kolmogorov Test," Econometrica, Econometric Society, vol. 65(5), pages 1097-1128, September.
    9. M.J.B. Hall, 1996. "The amendment to the capital accord to incorporate market risk," Banca Nazionale del Lavoro Quarterly Review, Banca Nazionale del Lavoro, vol. 49(197), pages 271-277.
    10. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    11. Herman J. Bierens & Donna K. Ginther, 2001. "Integrated Conditional Moment testing of quantile regression models," Empirical Economics, Springer, vol. 26(1), pages 307-324.
    12. Escanciano, J. Carlos & Velasco, Carlos, 2006. "Generalized spectral tests for the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 134(1), pages 151-185, September.
    13. Whang, Yoon-Jae, 2006. "Smoothed Empirical Likelihood Methods For Quantile Regression Models," Econometric Theory, Cambridge University Press, vol. 22(02), pages 173-205, April.
    14. Marc Hallin & Jana Jureckova, 1999. "Optimal tests for autoregressive models based on autoregression rank scores," ULB Institutional Repository 2013/2089, ULB -- Universite Libre de Bruxelles.
    15. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    16. Bilias, Yannis & Chen, Songnian & Ying, Zhiliang, 2000. "Simple resampling methods for censored regression quantiles," Journal of Econometrics, Elsevier, vol. 99(2), pages 373-386, December.
    17. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive density and conditional confidence interval accuracy tests," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 187-228.
    18. Sakov, Anat & Bickel, Peter J., 2000. "An Edgeworth expansion for the m out of n bootstrapped median," Statistics & Probability Letters, Elsevier, vol. 49(3), pages 217-223, September.
    19. Delgado, Miguel A. & Carlos Escanciano, J., 2007. "Nonparametric tests for conditional symmetry in dynamic models," Journal of Econometrics, Elsevier, vol. 141(2), pages 652-682, December.
    20. Bierens, Herman J., 1982. "Consistent model specification tests," Journal of Econometrics, Elsevier, vol. 20(1), pages 105-134, October.
    21. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    22. Escanciano, J. Carlos, 2009. "On The Lack Of Power Of Omnibus Specification Tests," Econometric Theory, Cambridge University Press, vol. 25(01), pages 162-194, February.
    23. Albrecht, James & van Vuuren, Aico & Vroman, Susan, 2009. "Counterfactual distributions with sample selection adjustments: Econometric theory and an application to the Netherlands," Labour Economics, Elsevier, vol. 16(4), pages 383-396, August.
    24. Escanciano, J. Carlos, 2006. "Goodness-of-Fit Tests for Linear and Nonlinear Time Series Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 531-541, June.
    25. Juan Carlos Escanciano & Silvia Mayoral, 2008. "Semiparametric estimation of dynamic conditional expected shortfall models," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 1(2), pages 106-120.
    26. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
    27. Zheng, John Xu, 1998. "A Consistent Nonparametric Test Of Parametric Regression Models Under Conditional Quantile Restrictions," Econometric Theory, Cambridge University Press, vol. 14(01), pages 123-138, February.
    28. José Mata & José A. F. Machado, 2005. "Counterfactual decomposition of changes in wage distributions using quantile regression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 445-465.
    29. Hahn, Jinyong, 1995. "Bootstrapping Quantile Regression Estimators," Econometric Theory, Cambridge University Press, vol. 11(01), pages 105-121, February.
    30. Roger Koenker & Zhijie Xiao, 2002. "Inference on the Quantile Regression Process," Econometrica, Econometric Society, vol. 70(4), pages 1583-1612, July.
    31. Koenker, Roger & Park, Beum J., 1996. "An interior point algorithm for nonlinear quantile regression," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 265-283.
    32. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(02), pages 186-199, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Rothe & Dominik Wied, 2013. "Misspecification Testing in a Class of Conditional Distributional Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 314-324, March.
    2. Conde-Amboage, Mercedes & Sánchez-Sellero, César & González-Manteiga, Wenceslao, 2015. "A lack-of-fit test for quantile regression models with high-dimensional covariates," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 128-138.
    3. Song Xi Chen & Jiti Gao, 2010. "Simultaneous Testing of Mean and Variance Structures in Nonlinear Time Series Models," School of Economics Working Papers 2010-28, University of Adelaide, School of Economics.
    4. Christoph Breunig, 2016. "Specification Testing in Nonparametric Instrumental Quantile Regression," SFB 649 Discussion Papers SFB649DP2016-032, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    5. Qu, Zhongjun & Yoon, Jungmo, 2015. "Nonparametric estimation and inference on conditional quantile processes," Journal of Econometrics, Elsevier, vol. 185(1), pages 1-19.
    6. Dette, Holger & Hoderlein, Stefan & Neumeyer, Natalie, 2016. "Testing multivariate economic restrictions using quantiles: The example of Slutsky negative semidefiniteness," Journal of Econometrics, Elsevier, vol. 191(1), pages 129-144.
    7. Escanciano, J.C. & Goh, S.C., 2014. "Specification analysis of linear quantile models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 495-507.
    8. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    9. Antonio Galvao & Kengo Kato & Gabriel Montes-Rojas & Jose Olmo, 2014. "Testing linearity against threshold effects: uniform inference in quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 413-439, April.
    10. Francesco Bravo, 2013. "Partially linear varying coefficient models with missing at random responses," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 721-762, August.
    11. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    12. Juan Carlos Escanciano & Chuan Goh, 2010. "Specification Analysis of Structural Quantile Regression Models," Working Papers tecipa-415, University of Toronto, Department of Economics.
    13. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, Elsevier.
    14. So, Mike K.P. & Chung, Ray S.W., 2015. "Statistical inference for conditional quantiles in nonlinear time series models," Journal of Econometrics, Elsevier, vol. 189(2), pages 457-472.

    More about this item

    Keywords

    C12; C22; Omnibus tests; Conditional quantiles; Nonlinear time series; Empirical processes; Quantile processes; Subsampling; Value-at-risk; Tail risk;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00732534. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.