IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Evaluating Value-at-Risk Models via Quantile Regressions

  • Wagner P. Gaglianone
  • Luiz Renato Lima
  • Oliver Linton

We propose an alternative backtest to evaluate the performance of Value-at-Risk (VaR) models. The presented methodology allows us to directly test the performance of many competing VaR models, as well as identify periods of an increased risk exposure based on a quantile regression model (Koenker & Xiao, 2002). Quantile regressions provide us an appropriate environment to investigate VaR models, since they can naturally be viewed as a conditional quantile function of a given return series. A Monte Carlo simulation is presented, revealing that our proposed test might exhibit more power in comparison to other backtests presented in the literature. Finally, an empirical exercise is conducted for daily S&P500 return series in order to explore the practical relevance of our methodology by evaluating five competing VaRs through four different backtests.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.bcb.gov.br/pec/wps/ingl/wps161.pdf
Download Restriction: no

Paper provided by Central Bank of Brazil, Research Department in its series Working Papers Series with number 161.

as
in new window

Length:
Date of creation: Feb 2008
Date of revision:
Handle: RePEc:bcb:wpaper:161
Contact details of provider: Web page: http://www.bcb.gov.br/?english

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Luiz Renato Lima & Breno Pinheiro Néri, 2006. "Comparing Value-at-Risk Methodologies," Computing in Economics and Finance 2006 1, Society for Computational Economics.
  2. Issler, João Victor & Lima, Luiz Renato, 2009. "A panel data approach to economic forecasting: The bias-corrected average forecast," Journal of Econometrics, Elsevier, vol. 152(2), pages 153-164, October.
  3. M.J.B. Hall, 1996. "The amendment to the capital accord to incorporate market risk," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 49(197), pages 271-277.
  4. Sean D. Campbell, 2005. "A review of backtesting and backtesting procedures," Finance and Economics Discussion Series 2005-21, Board of Governors of the Federal Reserve System (U.S.).
  5. M.J.B. Hall, 1996. "The amendment to the capital accord to incorporate market risk," Banca Nazionale del Lavoro Quarterly Review, Banca Nazionale del Lavoro, vol. 49(197), pages 271-277.
  6. Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
  7. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
  8. Jose A. Lopez, 1999. "Methods for evaluating value-at-risk estimates," Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
  9. Raffaella Giacomini & Ivana Komunjer, 2003. "Evaluation and Combination of Conditional Quantile Forecasts," Boston College Working Papers in Economics 571, Boston College Department of Economics.
  10. Charles, Amelie & Darne, Olivier, 2005. "Outliers and GARCH models in financial data," Economics Letters, Elsevier, vol. 86(3), pages 347-352, March.
  11. José A. F. Machado & José Mata, 2001. "Earning functions in Portugal 1982-1994: Evidence from quantile regressions," Empirical Economics, Springer, vol. 26(1), pages 115-134.
  12. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 53-89.
  13. Robert Engle & Simone Manganelli, 2000. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Econometric Society World Congress 2000 Contributed Papers 0841, Econometric Society.
  14. Jon Danielsson & Bjørn N. Jorgensen & Sarma Mandira & Gennady Samorodnitsky & C. G. de Vries, 2005. "Subadditivity re–examined: the case for value-at-risk," LSE Research Online Documents on Economics 24668, London School of Economics and Political Science, LSE Library.
  15. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  16. Peter Christoffersen & Sílvia Gonçalves, 2004. "Estimation Risk in Financial Risk Management," CIRANO Working Papers 2004s-15, CIRANO.
  17. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 84-108.
  18. Koenker, Roger & Zhao, Quanshui, 1996. "Conditional Quantile Estimation and Inference for Arch Models," Econometric Theory, Cambridge University Press, vol. 12(05), pages 793-813, December.
  19. Jean-Pierre Zigrand & Jon Danielsson, 2003. "On time-scaling of risk and the square–root–of–time rule," FMG Discussion Papers dp439, Financial Markets Group.
  20. Matthew Pritsker, 2001. "The hidden dangers of historical simulation," Finance and Economics Discussion Series 2001-27, Board of Governors of the Federal Reserve System (U.S.).
  21. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
  22. Len Umantsev & Victor Chernozhukov, 2001. "Conditional value-at-risk: Aspects of modeling and estimation," Empirical Economics, Springer, vol. 26(1), pages 271-292.
  23. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
  24. Christoffersen, Peter & Hahn, Jinyong & Inoue, Atsushi, 2001. "Testing and comparing Value-at-Risk measures," Journal of Empirical Finance, Elsevier, vol. 8(3), pages 325-342, July.
  25. Philipp Hartmann & Jon Danielsson, 1998. "The Cost of Conservatism: Extreme Returns, Value-at Risk, and the Basle Multiplicaiton Factor," FMG Special Papers sp100, Financial Markets Group.
  26. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
  27. Hartz, Christoph & Mittnik, Stefan & Paolella, Marc, 2006. "Accurate value-at-risk forecasting based on the normal-GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2295-2312, December.
  28. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
  29. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
  30. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
  31. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value-at-Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, 06.
  32. Franses, Philip Hans & Ghijsels, Hendrik, 1999. "Additive outliers, GARCH and forecasting volatility," International Journal of Forecasting, Elsevier, vol. 15(1), pages 1-9, February.
  33. Roger Koenker & Zhijie Xiao, 2002. "Inference on the Quantile Regression Process," Econometrica, Econometric Society, vol. 70(4), pages 1583-1612, July.
  34. Linton, O. & Whang, Yoon-Jae, 2007. "The quantilogram: With an application to evaluating directional predictability," Journal of Econometrics, Elsevier, vol. 141(1), pages 250-282, November.
  35. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.
  36. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
  37. Huisman, Ronald, et al, 2001. "Tail-Index Estimates in Small Samples," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 208-16, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bcb:wpaper:161. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Francisco Marcos Rodrigues Figueiredo)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.