IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v51y2006i4p2295-2312.html
   My bibliography  Save this article

Accurate value-at-risk forecasting based on the normal-GARCH model

Author

Listed:
  • Hartz, Christoph
  • Mittnik, Stefan
  • Paolella, Marc

Abstract

No abstract is available for this item.

Suggested Citation

  • Hartz, Christoph & Mittnik, Stefan & Paolella, Marc, 2006. "Accurate value-at-risk forecasting based on the normal-GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2295-2312, December.
  • Handle: RePEc:eee:csdana:v:51:y:2006:i:4:p:2295-2312
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(06)00336-7
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin Dowd & David Blake, 2006. "After VaR: The Theory, Estimation, and Insurance Applications of Quantile-Based Risk Measures," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(2), pages 193-229.
    2. He, Changli & Ter svirta, Timo & Malmsten, Hans, 2002. "Moment Structure Of A Family Of First-Order Exponential Garch Models," Econometric Theory, Cambridge University Press, vol. 18(04), pages 868-885, August.
    3. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
    4. Peter Christoffersen & Sílvia Gonçalves, 2004. "Estimation Risk in Financial Risk Management," CIRANO Working Papers 2004s-15, CIRANO.
    5. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    6. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    7. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 53-89.
    8. Markus Haas, 2004. "Mixed Normal Conditional Heteroskedasticity," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(2), pages 211-250.
    9. Christoffersen, Peter, 2011. "Elements of Financial Risk Management," Elsevier Monographs, Elsevier, edition 2, number 9780123744487.
    10. M.J.B. Hall, 1996. "The amendment to the capital accord to incorporate market risk," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 49(197), pages 271-277.
    11. Mittnik, Stefan & Paolella, Marc S. & Rachev, Svetlozar T., 2002. "Stationarity of stable power-GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 97-107, January.
    12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    13. Changli He & Timo Terasvirta & Hans Malmsten, 1999. "Fourth Moment Structure of a Family of First-Order Exponential GARCH Models," Research Paper Series 29, Quantitative Finance Research Centre, University of Technology, Sydney.
    14. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
    15. Broda, Simon & Paolella, Marc S., 2007. "Saddlepoint approximations for the doubly noncentral t distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2907-2918, March.
    16. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    17. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    18. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.
    19. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(04), pages 465-487, December.
    20. Markus Haas & Stefan Mittnik & Marc Paolella, 2006. "Modelling and predicting market risk with Laplace-Gaussian mixture distributions," Applied Financial Economics, Taylor & Francis Journals, vol. 16(15), pages 1145-1162.
    21. Audrino, Francesco, 2006. "The impact of general non-parametric volatility functions in multivariate GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3032-3052, July.
    22. Antoine Frachot, 1995. "Factor Models Of Domestic And Foreign Interest Rates With Stochastic Volatilities," Mathematical Finance, Wiley Blackwell, vol. 5(2), pages 167-185.
    23. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    24. Markus Haas, 2004. "A New Approach to Markov-Switching GARCH Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(4), pages 493-530.
    25. Emese Lazar & Carol Alexander, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336.
    26. Mittnik, Stefan & Paolella, Marc S. & Rachev, Svetlozar T., 2000. "Diagnosing and treating the fat tails in financial returns data," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 389-416, November.
    27. Enrique Sentana, 1995. "Quadratic ARCH Models," Review of Economic Studies, Oxford University Press, vol. 62(4), pages 639-661.
    28. Mittnik, Stefan & Paolella, Marc S., 2003. "Prediction of Financial Downside-Risk with Heavy-Tailed Conditional Distributions," CFS Working Paper Series 2003/04, Center for Financial Studies (CFS).
    29. Bams, Dennis & Lehnert, Thorsten & Wolff, Christian C.P., 2005. "An evaluation framework for alternative VaR-models," Journal of International Money and Finance, Elsevier, vol. 24(6), pages 944-958, October.
    30. Giovanni Barone-Adesi & Kostas Giannopoulos & Les Vosper, 2002. "Backtesting Derivative Portfolios with Filtered Historical Simulation (FHS)," European Financial Management, European Financial Management Association, vol. 8(1), pages 31-58.
    31. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nieto, María Rosa & Ruiz, Esther, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    3. Stavros Degiannakis & Pamela Dent & Christos Floros, 2014. "A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification," Manchester School, University of Manchester, vol. 82(1), pages 71-102, January.
    4. Meriem Rjiba, Meriem & Tsagris, Michail & Mhalla, Hedi, 2015. "Bootstrap for Value at Risk Prediction," MPRA Paper 68842, University Library of Munich, Germany.
    5. Fresoli, Diego E. & Ruiz, Esther, 2016. "The uncertainty of conditional returns, volatilities and correlations in DCC models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 170-185.
    6. Broda, Simon & Paolella, Marc S., 2007. "Saddlepoint approximations for the doubly noncentral t distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2907-2918, March.
    7. Perez-Alonso, Alicia, 2007. "A bootstrap approach to test the conditional symmetry in time series models," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3484-3504, April.
    8. Shimizu Kenichi, 2013. "The bootstrap does not alwayswork for heteroscedasticmodels," Statistics & Risk Modeling, De Gruyter, vol. 30(3), pages 189-204, August.
    9. repec:rss:jnljef:v4i6p4 is not listed on IDEAS
    10. Hotta, Luiz & Trucíos, Carlos & Ruiz, Esther, 2015. "Robust bootstrap forecast densities for GARCH models: returns, volatilities and value-at-risk," DES - Working Papers. Statistics and Econometrics. WS ws1523, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Carol Alexander & Jose Maria Sarabia, 2010. "Endogenizing Model Risk to Quantile Estimates," ICMA Centre Discussion Papers in Finance icma-dp2010-07, Henley Business School, Reading University.
    12. Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models-at-risk," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.
    13. Nieto, María Rosa & Ruiz, Esther, 2010. "Bootstrap prediction intervals for VaR and ES in the context of GARCH models," DES - Working Papers. Statistics and Econometrics. WS ws102814, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Taewook Lee & Moosup Kim & Changryong Baek, 2015. "Tests for Volatility Shifts in Garch Against Long-Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 127-153, March.
    15. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    16. Köksal, Bülent & Orhan, Mehmet, 2012. "Market risk of developed and developing countries during the global financial crisis," MPRA Paper 37523, University Library of Munich, Germany.
    17. Fan, Ying & Zhang, Yue-Jun & Tsai, Hsien-Tang & Wei, Yi-Ming, 2008. "Estimating 'Value at Risk' of crude oil price and its spillover effect using the GED-GARCH approach," Energy Economics, Elsevier, vol. 30(6), pages 3156-3171, November.
    18. Giannikis, D. & Vrontos, I.D. & Dellaportas, P., 2008. "Modelling nonlinearities and heavy tails via threshold normal mixture GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1549-1571, January.
    19. Lönnbark, Carl, 2008. "A Corrected Value-at-Risk Predictor," Umeå Economic Studies 734, Umeå University, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2006:i:4:p:2295-2312. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.