IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Value at risk estimation by quantile regression and kernel estimator

  • Alex Huang

    ()

Registered author(s):

    Risk management has attracted a great deal of attention, and Value at Risk (VaR) has emerged as a particularly popular and important measure for detecting the market risk of financial assets. The quantile regression method can generate VaR estimates without distributional assumptions; however, empirical evidence has shown the approach to be ineffective at evaluating the real level of downside risk in out-of-sample examination. This paper proposes a process in VaR estimation with methods of quantile regression and kernel estimator which applies the nonparametric technique with extreme quantile forecasts to realize a tail distribution and locate the VaR estimates. Empirical application of worldwide stock indices with 29 years of data is conducted and confirms the proposed approach outperforms others and provides highly reliable estimates. Copyright Springer Science+Business Media, LLC 2013

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1007/s11156-012-0308-x
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Review of Quantitative Finance and Accounting.

    Volume (Year): 41 (2013)
    Issue (Month): 2 (August)
    Pages: 225-251

    as
    in new window

    Handle: RePEc:kap:rqfnac:v:41:y:2013:i:2:p:225-251
    Contact details of provider: Web page: http://springerlink.metapress.com/link.asp?id=102990

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. C. Gourieroux & J.P. Laurent & O. Scaillet, 2000. "Sensitivity analysis of values at risk," THEMA Working Papers 2000-04, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    2. Pierre Giot & Sébastien Laurent, 2002. "Modelling Daily Value-at-Risk Using Realized Volatility and ARCH Type Models," Computing in Economics and Finance 2002 52, Society for Computational Economics.
    3. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
    4. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    5. Kuan, Chung-Ming & Yeh, Jin-Huei & Hsu, Yu-Chin, 2009. "Assessing value at risk with CARE, the Conditional Autoregressive Expectile models," Journal of Econometrics, Elsevier, vol. 150(2), pages 261-270, June.
    6. Christian Gourieroux & Jean-Paul Laurent & Olivier Scaillet, 2000. "Sensitivity Analysis of Values at Risk," Working Papers 2000-05, Centre de Recherche en Economie et Statistique.
    7. Chen, Fen-Ying & Liao, Szu-Lang, 2009. "Modelling VaR for foreign-asset portfolios in continuous time," Economic Modelling, Elsevier, vol. 26(1), pages 234-240, January.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Bali, Turan G. & Mo, Hengyong & Tang, Yi, 2008. "The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 269-282, February.
    10. Jondeau, Eric & Rockinger, Michael, 2003. "Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1699-1737, August.
    11. Gregory Connor & Oliver Linton, 2006. "Semiparametric estimation of a characteristic-based factor model of common stock returns," LSE Research Online Documents on Economics 4424, London School of Economics and Political Science, LSE Library.
    12. Chris Brooks, 2005. "Autoregressive Conditional Kurtosis," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(3), pages 399-421.
    13. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, 03.
    14. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    15. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
    16. Mittnik, Stefan & Paolella, Marc S. & Rachev, Svetlozar T., 2002. "Stationarity of stable power-GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 97-107, January.
    17. I. Gijbels & A. Pope & M. P. Wand, 1999. "Understanding exponential smoothing via kernel regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 39-50.
    18. James W. Taylor, 2008. "Using Exponentially Weighted Quantile Regression to Estimate Value at Risk and Expected Shortfall," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(3), pages 382-406, Summer.
    19. Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
    20. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    21. Ledoit, Oliver & Wolf, Michael, 2008. "Robust performance hypothesis testing with the Sharpe ratio," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 850-859, December.
    22. Sentana,E., 1995. "Quadratic Arch Models," Papers 9517, Centro de Estudios Monetarios Y Financieros-.
    23. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 53-89.
    24. Timotheos Angelidis & Alexandros Benos & Stavros Degiannakis, 2007. "A robust VaR model under different time periods and weighting schemes," Review of Quantitative Finance and Accounting, Springer, vol. 28(2), pages 187-201, February.
    25. Alex Huang, 2011. "Volatility Modeling by Asymmetrical Quadratic Effect with Diminishing Marginal Impact," Computational Economics, Society for Computational Economics, vol. 37(3), pages 301-330, March.
    26. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    27. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
    28. Alex YiHou Huang, 2009. "A value-at-risk approach with kernel estimator," Applied Financial Economics, Taylor & Francis Journals, vol. 19(5), pages 379-395.
    29. Costello, Alexandra & Asem, Ebenezer & Gardner, Eldon, 2008. "Comparison of historically simulated VaR: Evidence from oil prices," Energy Economics, Elsevier, vol. 30(5), pages 2154-2166, September.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:kap:rqfnac:v:41:y:2013:i:2:p:225-251. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn)

    or (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.