IDEAS home Printed from https://ideas.repec.org/a/eee/revfin/v19y2010i3p109-116.html
   My bibliography  Save this article

An optimization process in Value-at-Risk estimation

Author

Listed:
  • Huang, Alex YiHou

Abstract

A new method is proposed to estimate Value-at-Risk (VaR) by Monte Carlo simulation with optimal back-testing results. The Monte Carlo simulation is adjusted through an iterative process to accommodate recent shocks, thereby taking into account the latest market conditions. Empirical validation covering the current financial crisis shows that VaR estimation via the optimization process is relatively reliable and consistent, and generally outperforms the VaR generated by a simple Monte Carlo simulation. This is particularly true in cases when the out-of-sample evaluation sample spans a lengthy period, as the traditional method tends to underestimate the number of extreme shocks.

Suggested Citation

  • Huang, Alex YiHou, 2010. "An optimization process in Value-at-Risk estimation," Review of Financial Economics, Elsevier, vol. 19(3), pages 109-116, August.
  • Handle: RePEc:eee:revfin:v:19:y:2010:i:3:p:109-116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1058-3300(10)00005-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuan, Chung-Ming & Yeh, Jin-Huei & Hsu, Yu-Chin, 2009. "Assessing value at risk with CARE, the Conditional Autoregressive Expectile models," Journal of Econometrics, Elsevier, vol. 150(2), pages 261-270, June.
    2. Alex YiHou Huang, 2009. "A value-at-risk approach with kernel estimator," Applied Financial Economics, Taylor & Francis Journals, vol. 19(5), pages 379-395.
    3. Jalal, Amine & Rockinger, Michael, 2008. "Predicting tail-related risk measures: The consequences of using GARCH filters for non-GARCH data," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 868-877, December.
    4. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 53-89.
    5. Siven, Johannes Vitalis & Lins, Jeffrey Todd & Szymkowiak-Have, Anna, 2009. "Value-at-Risk computation by Fourier inversion with explicit error bounds," Finance Research Letters, Elsevier, vol. 6(2), pages 95-105, June.
    6. Mittnik, Stefan & Paolella, Marc S. & Rachev, Svetlozar T., 2002. "Stationarity of stable power-GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 97-107, January.
    7. Bali, Turan G. & Mo, Hengyong & Tang, Yi, 2008. "The role of autoregressive conditional skewness and kurtosis in the estimation of conditional VaR," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 269-282, February.
    8. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    9. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    10. Subu Venkataraman, 1997. "Value at risk for a mixture of normal distributions: the use of quasi- Bayesian estimation techniques," Economic Perspectives, Federal Reserve Bank of Chicago, issue Mar, pages 2-13.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. So, Mike K.P. & Chen, Cathy W.S. & Lee, Jen-Yu & Chang, Yi-Ping, 2008. "An empirical evaluation of fat-tailed distributions in modeling financial time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(1), pages 96-108.
    13. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Economic Policy Review, Federal Reserve Bank of New York, issue Apr, pages 39-69.
    14. Hung, Jui-Cheng & Lee, Ming-Chih & Liu, Hung-Chun, 2008. "Estimation of value-at-risk for energy commodities via fat-tailed GARCH models," Energy Economics, Elsevier, vol. 30(3), pages 1173-1191, May.
    15. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    16. Longin, Francois M, 1996. "The Asymptotic Distribution of Extreme Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 69(3), pages 383-408, July.
    17. Rossello, Damiano, 2008. "MaxVaR with non-Gaussian distributed returns," European Journal of Operational Research, Elsevier, vol. 189(1), pages 159-171, August.
    18. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 27(01), pages 117-137, May.
    19. Taamouti, Abderrahim, 2009. "Analytical Value-at-Risk and Expected Shortfall under regime-switching," Finance Research Letters, Elsevier, vol. 6(3), pages 138-151, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stavros Degiannakis & Pamela Dent & Christos Floros, 2014. "A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification," Manchester School, University of Manchester, vol. 82(1), pages 71-102, January.
    2. Kostas Andriosopoulos & Nikos Nomikos, 2012. "Risk management in the energy markets and Value-at-Risk modelling: a Hybrid approach," RSCAS Working Papers 2012/47, European University Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:revfin:v:19:y:2010:i:3:p:109-116. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/620170 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.