IDEAS home Printed from https://ideas.repec.org/a/fip/fedhep/y1997imarp2-13nv.21no.2.html
   My bibliography  Save this article

Value at risk for a mixture of normal distributions: the use of quasi- Bayesian estimation techniques

Author

Listed:
  • Subu Venkataraman

Abstract

This article proposes a methodology for measuring value at risk for fat-tailed asset return distributions. Simulation-based results indicate that this approach provides better estimates of risk than one based on the assumption that asset returns are normally distributed.

Suggested Citation

  • Subu Venkataraman, 1997. "Value at risk for a mixture of normal distributions: the use of quasi- Bayesian estimation techniques," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 21(Mar), pages 2-13.
  • Handle: RePEc:fip:fedhep:y:1997:i:mar:p:2-13:n:v.21no.2
    as

    Download full text from publisher

    File URL: http://www.chicagofed.org/digital_assets/publications/economic_perspectives/1997/epmar97a.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamilton, James D, 1991. "A Quasi-Bayesian Approach to Estimating Parameters for Mixtures of Normal Distributions," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(1), pages 27-39, January.
    2. Kim, Dongcheol & Kon, Stanley J, 1994. "Alternative Models for the Conditional Heteroscedasticity of Stock Returns," The Journal of Business, University of Chicago Press, vol. 67(4), pages 563-598, October.
    3. Engel, Charles & Hamilton, James D, 1990. "Long Swings in the Dollar: Are They in the Data and Do Markets Know It?," American Economic Review, American Economic Association, vol. 80(4), pages 689-713, September.
    4. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    5. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    6. Jorion, Philippe, 1995. "Predicting Volatility in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 50(2), pages 507-528, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Bing-Huei & Yeh, Shih-Kuo, 2000. "On the distribution and conditional heteroscedasticity in Taiwan stock prices," Journal of Multinational Financial Management, Elsevier, vol. 10(3-4), pages 367-395, December.
    2. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
    3. Chuang, Wen-I & Huang, Teng-Ching & Lin, Bing-Huei, 2013. "Predicting volatility using the Markov-switching multifractal model: Evidence from S&P 100 index and equity options," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 168-187.
    4. Becker, Ralf & Clements, Adam E., 2008. "Are combination forecasts of S&P 500 volatility statistically superior?," International Journal of Forecasting, Elsevier, vol. 24(1), pages 122-133.
    5. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    6. Jun Lu & Shao Yi, 2022. "Reducing Overestimating and Underestimating Volatility via the Augmented Blending-ARCH Model," Applied Economics and Finance, Redfame publishing, vol. 9(2), pages 48-59, May.
    7. Engel, Charles, 1994. "Can the Markov switching model forecast exchange rates?," Journal of International Economics, Elsevier, vol. 36(1-2), pages 151-165, February.
    8. José R. Aragonés & Carlos Blanco & Pablo García Estévez, 2007. "Neural network volatility forecasts," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(3‐4), pages 107-121, July.
    9. Kambouroudis, Dimos S. & McMillan, David G., 2015. "Is there an ideal in-sample length for forecasting volatility?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 114-137.
    10. Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
    11. Lin, Shih-Kuei & Lin, Chien-Hsiu & Chuang, Ming-Che & Chou, Chia-Yu, 2014. "A recursive formula for a participating contract embedding a surrender option under regime-switching model with jump risks: Evidence from stock indices," Economic Modelling, Elsevier, vol. 38(C), pages 341-350.
    12. Allan P. Layton, 1997. "Do Leading Indicators Really Predict Australian Business Cycle Turning Points?," The Economic Record, The Economic Society of Australia, vol. 73(222), pages 258-269, September.
    13. Du, Xiaodong & Yu, Cindy L. & Hayes, Dermot J., 2011. "Speculation and volatility spillover in the crude oil and agricultural commodity markets: A Bayesian analysis," Energy Economics, Elsevier, vol. 33(3), pages 497-503, May.
    14. Dominique Guegan & Jing Zang, 2009. "Pricing bivariate option under GARCH-GH model with dynamic copula: application for Chinese market," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 777-795.
    15. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    16. ROCKINGER, Michael & JONDEAU, Eric, 2000. "Conditional Volatility, Skewness, and Kurtosis : Existence and Persistence," HEC Research Papers Series 710, HEC Paris.
    17. Hamilton, James D., 1996. "Specification testing in Markov-switching time-series models," Journal of Econometrics, Elsevier, vol. 70(1), pages 127-157, January.
    18. Beum-Jo Park, 2009. "Risk-return relationship in equity markets: using a robust GMM estimator for GARCH-M models," Quantitative Finance, Taylor & Francis Journals, vol. 9(1), pages 93-104.
    19. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    20. David McMillan & Pako Thupayagale, 2010. "Evaluating Stock Index Return Value-at-Risk Estimates in South Africa," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 9(3), pages 325-345, December.

    More about this item

    Keywords

    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedhep:y:1997:i:mar:p:2-13:n:v.21no.2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lauren Wiese (email available below). General contact details of provider: https://edirc.repec.org/data/frbchus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.