IDEAS home Printed from https://ideas.repec.org/a/kap/rqfnac/v27y2006i1p27-46.html
   My bibliography  Save this article

Evaluating effects of excess kurtosis on VaR estimates: Evidence for international stock indices

Author

Listed:
  • J. Baixauli

    ()

  • Susana Alvarez

    ()

Abstract

The calculus of VaR involves dealing with the confidence level, the time horizon and the true underlying conditional distribution function of asset returns. In this paper, we shall examine the effects of using a specific distribution function that fits well the low-tail data of the observed distribution of asset returns on the accuracy of VaR estimates. In our analysis, we consider some distributional forms characterized by capturing the excess kurtosis characteristic of stock return distributions and we compare their performance using some international stock indices. Copyright Springer Science + Business Media, LLC 2006

Suggested Citation

  • J. Baixauli & Susana Alvarez, 2006. "Evaluating effects of excess kurtosis on VaR estimates: Evidence for international stock indices," Review of Quantitative Finance and Accounting, Springer, vol. 27(1), pages 27-46, August.
  • Handle: RePEc:kap:rqfnac:v:27:y:2006:i:1:p:27-46
    DOI: 10.1007/s11156-006-8541-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11156-006-8541-9
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    2. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    3. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 84-108.
    4. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    5. Bauer, Christian, 2000. "Value at risk using hyperbolic distributions," Journal of Economics and Business, Elsevier, vol. 52(5), pages 455-467.
    6. Mittnik, Stefan & Paolella, Marc S. & Rachev, Svetlozar T., 2000. "Diagnosing and treating the fat tails in financial returns data," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 389-416, November.
    7. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    8. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    9. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    10. Lopez, Jose A. & Saidenberg, Marc R., 2000. "Evaluating credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 151-165, January.
    11. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    12. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    13. Nagel, Eva-Renate & Dette, Holger & Neumeyer, Natalie, 2004. "Bootstrap tests for the error distribution in linear and nonparametric regression models," Technical Reports 2004,38, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. In Kim & In-Seok Baek & Jaesun Noh & Sol Kim, 2007. "The role of stochastic volatility and return jumps: reproducing volatility and higher moments in the KOSPI 200 returns dynamics," Review of Quantitative Finance and Accounting, Springer, vol. 29(1), pages 69-110, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:rqfnac:v:27:y:2006:i:1:p:27-46. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.