IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2003s-05.html
   My bibliography  Save this paper

Backtesting Value-at-Risk: A Duration-Based Approach

Author

Listed:
  • Peter Christoffersen
  • Denis Pelletier

Abstract

Financial risk model evaluation or backtesting is a key part of the internal model's approach to market risk management as laid out by the Basle Committee on Banking Supervision. However, existing backtesting methods have relatively low power in realistic small sample settings. Our contribution is the exploration of new tools for backtesting based on the duration of days between the violations of the Value-at-Risk. Our Monte Carlo results show that in realistic situations, the new duration-based tests have considerably better power properties than the previously suggested tests. Copyright 2004, Oxford University Press.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Peter Christoffersen & Denis Pelletier, 2003. "Backtesting Value-at-Risk: A Duration-Based Approach," CIRANO Working Papers 2003s-05, CIRANO.
  • Handle: RePEc:cir:cirwor:2003s-05
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2003s-05.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Francis X. Diebold & Todd A. Gunther & Anthony S. Tay, "undated". "Evaluating Density Forecasts," CARESS Working Papres 97-18, University of Pennsylvania Center for Analytic Research and Economics in the Social Sciences.
    2. Christoffersen, Peter & Hahn, Jinyong & Inoue, Atsushi, 2001. "Testing and comparing Value-at-Risk measures," Journal of Empirical Finance, Elsevier, vol. 8(3), pages 325-342, July.
    3. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Economic Policy Review, Federal Reserve Bank of New York, vol. 2(Apr), pages 39-69.
    4. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value‐at‐Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
    5. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    6. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    7. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    8. James D. Hamilton & Oscar Jorda, 2002. "A Model of the Federal Funds Rate Target," Journal of Political Economy, University of Chicago Press, vol. 110(5), pages 1135-1167, October.
    9. Kiefer, Nicholas M, 1988. "Economic Duration Data and Hazard Functions," Journal of Economic Literature, American Economic Association, vol. 26(2), pages 646-679, June.
    10. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    11. M.J.B. Hall, 1996. "The amendment to the capital accord to incorporate market risk," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 49(197), pages 271-277.
    12. Matthew Pritsker, 1997. "Evaluating Value at Risk Methodologies: Accuracy versus Computational Time," Journal of Financial Services Research, Springer;Western Finance Association, vol. 12(2), pages 201-242, October.
    13. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    14. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    15. Dale J. Poirier, 1995. "Intermediate Statistics and Econometrics: A Comparative Approach," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262161494, December.
    16. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    17. Gourieroux,Christian, 2000. "Econometrics of Qualitative Dependent Variables," Cambridge Books, Cambridge University Press, number 9780521589857, April.
    18. Matthew Pritsker, 2001. "The hidden dangers of historical simulation," Finance and Economics Discussion Series 2001-27, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    2. Jeremy Berkowitz & Peter Christoffersen & Denis Pelletier, 2011. "Evaluating Value-at-Risk Models with Desk-Level Data," Management Science, INFORMS, vol. 57(12), pages 2213-2227, December.
    3. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    4. Jeremy Berkowitz & James M. O'Brien, 2001. "How accurate are Value-at-Risk models at commercial banks?," Finance and Economics Discussion Series 2001-31, Board of Governors of the Federal Reserve System (U.S.).
    5. Pritsker, Matthew, 2006. "The hidden dangers of historical simulation," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 561-582, February.
    6. Frésard, Laurent & Pérignon, Christophe & Wilhelmsson, Anders, 2011. "The pernicious effects of contaminated data in risk management," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2569-2583, October.
    7. Wong, Woon K., 2010. "Backtesting value-at-risk based on tail losses," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 526-538, June.
    8. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    9. Zaichao Du & Juan Carlos Escanciano, 2017. "Backtesting Expected Shortfall: Accounting for Tail Risk," Management Science, INFORMS, vol. 63(4), pages 940-958, April.
    10. Rostagno, Luciano Martin, 2005. "Empirical tests of parametric and non-parametric Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for the Brazilian stock market index," ISU General Staff Papers 2005010108000021878, Iowa State University, Department of Economics.
    11. Matthew Pritsker, 2001. "The hidden dangers of historical simulation," Finance and Economics Discussion Series 2001-27, Board of Governors of the Federal Reserve System (U.S.).
    12. Sean D. Campbell, 2005. "A review of backtesting and backtesting procedures," Finance and Economics Discussion Series 2005-21, Board of Governors of the Federal Reserve System (U.S.).
    13. Jose A. Lopez, 1999. "Methods for evaluating value-at-risk estimates," Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
    14. Carol Alexander & Jose Maria Sarabia, 2010. "Endogenizing Model Risk to Quantile Estimates," ICMA Centre Discussion Papers in Finance icma-dp2010-07, Henley Business School, University of Reading.
    15. Leccadito, Arturo & Boffelli, Simona & Urga, Giovanni, 2014. "Evaluating the accuracy of value-at-risk forecasts: New multilevel tests," International Journal of Forecasting, Elsevier, vol. 30(2), pages 206-216.
    16. Colletaz, Gilbert & Hurlin, Christophe & Pérignon, Christophe, 2013. "The Risk Map: A new tool for validating risk models," Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3843-3854.
    17. Zhang, Bangzheng & Wei, Yu & Yu, Jiang & Lai, Xiaodong & Peng, Zhenfeng, 2014. "Forecasting VaR and ES of stock index portfolio: A Vine copula method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 112-124.
    18. Gregory, Allan W. & Reeves, Jonathan J., 2008. "Interpreting Value at Risk (VaR) forecasts," Economic Systems, Elsevier, vol. 32(2), pages 167-176, June.
    19. Chao Wang & Qian Chen & Richard Gerlach, 2017. "Bayesian Realized-GARCH Models for Financial Tail Risk Forecasting Incorporating Two-sided Weibull Distribution," Papers 1707.03715, arXiv.org.
    20. Escanciano, Juan Carlos & Pei, Pei, 2012. "Pitfalls in backtesting Historical Simulation VaR models," Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2233-2244.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2003s-05. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.