IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/halshs-00159846.html
   My bibliography  Save this paper

Une Evaluation des Procédures de Backtesting

Author

Listed:
  • Christophe Hurlin

    () (LEO - Laboratoire d'économie d'Orleans - UO - Université d'Orléans - CNRS - Centre National de la Recherche Scientifique)

  • Sessi Tokpavi

    () (LEO - Laboratoire d'économie d'Orleans - UO - Université d'Orléans - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper proposes an evaluation of backtests that examine the accuracy of Value-at-Risk (VaR) forecasts. It is well known that VaR backtesting procedures outlined by the Basel Committee for Banking Supervision have limited power to control the probability of accepting an incorrect VaR forecast. In this study, we propose an original approach based on the replication of these tests on six different VaR forecasts (parametric or non parametric) for a given asset. We show that backtests generally lead to not reject the accuracy of all (or most of) these different forecasts. In other words, most of VaR forecasts are likely to be considered as valid.

Suggested Citation

  • Christophe Hurlin & Sessi Tokpavi, 2007. "Une Evaluation des Procédures de Backtesting," Working Papers halshs-00159846, HAL.
  • Handle: RePEc:hal:wpaper:halshs-00159846
    Note: View the original document on HAL open archive server: https://halshs.archives-ouvertes.fr/halshs-00159846
    as

    Download full text from publisher

    File URL: https://halshs.archives-ouvertes.fr/halshs-00159846/document
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value-at-Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
    2. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    3. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    4. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    5. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Proceedings 512, Federal Reserve Bank of Chicago.
    6. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    7. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 84-108.
    8. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    9. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Economic Policy Review, Federal Reserve Bank of New York, issue Apr, pages 39-69.
    10. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    11. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    12. Matthew Pritsker, 2001. "The hidden dangers of historical simulation," Finance and Economics Discussion Series 2001-27, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena-Ivona Dumitrescu & Christophe Hurlin & Vinson Pham, 2012. "Backtesting Value-at-Risk: From Dynamic Quantile to Dynamic Binary Tests," Finance, Presses universitaires de Grenoble, vol. 33(1), pages 79-112.
    2. Elena-Ivona DUMITRESCU, 2011. "Backesting Value-at-Risk: From DQ (Dynamic Quantile) to DB (Dynamic Binary) Tests," LEO Working Papers / DR LEO 262, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    3. CARPANTIER, Jean - François, 2010. "Commodities inventory effect," CORE Discussion Papers 2010040, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. El Bouhadi, Abdelhamid & Achibane, Khalid, 2009. "The Predictive Power of Conditional Models: What Lessons to Draw with Financial Crisis in the Case of Pre-Emerging Capital Markets?," MPRA Paper 19482, University Library of Munich, Germany.
    5. CARPANTIER, Jean-François & DUFAYS, Arnaud, 2012. "Commodities volatility and the theory of storage," CORE Discussion Papers 2012037, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. repec:dau:papers:123456789/15232 is not listed on IDEAS

    More about this item

    Keywords

    Value-at-Risk; Backtesting;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:halshs-00159846. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.