IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/19482.html
   My bibliography  Save this paper

The Predictive Power of Conditional Models: What Lessons to Draw with Financial Crisis in the Case of Pre-Emerging Capital Markets?

Author

Listed:
  • El Bouhadi, Abdelhamid
  • Achibane, Khalid

Abstract

The uncertainty plays a central role in most of the problems which addressed by the modern financial theory. For some time, we know that the uncertainty under the speculative price varies over the time. However, it is only recently that a lot of studies in applied finance and monetary economics using the explicit modelling of time series involving the second and the higher moments of variables. Indeed, the first tool appeared in order to model such variables has been introduced by Engel (1982). This is the autoregressive conditional heteroskedasticity and its many extensions. Thus, with the emergence and development of these models, Value-at-Risk, which plays a major role in assessment and risk management of financial institutions, has become a more effective tool to measure the risk of asset holdings. Following the current financial debacle, we give the simple question about the progress and some achievements made in the context of emerging and pre-emergent financial markets microstructure which can sustain and limit the future fluctuations. Today, we know that the crisis has no spared any financial market in the world. The magnitude and damage of the crisis effects vary in the space and time. In the Moroccan stock market context, it was found that the effects were not so harmful and that the future of these markets faces a compromise or at least a long lethargy. Indeed, inspired by these events, our study attempts to undertake two exercises. In first, we are testing the ability of the nonlinear ARCH and GARCH models (EGARCH, TGARCH, GJR-GARCH, QGARCH) to meet the number of expected exceedances (shortfalls) of VaR measurement. In second, we are providing a forecasting volatility under the time-varying of VaR.

Suggested Citation

  • El Bouhadi, Abdelhamid & Achibane, Khalid, 2009. "The Predictive Power of Conditional Models: What Lessons to Draw with Financial Crisis in the Case of Pre-Emerging Capital Markets?," MPRA Paper 19482, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:19482
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/19482/1/MPRA_paper_19482.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    2. Bertrand Candelon & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2011. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(2), pages 314-343, Spring.
    3. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    4. Hansen, Bruce E, 1992. "The Likelihood Ratio Test under Nonstandard Conditions: Testing the Markov Switching Model of GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 61-82, Suppl. De.
    5. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value-at-Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
    6. Christophe HURLIN & Sessi TOKPAVI, 2007. "Une évaluation des procédures de Backtesting," LEO Working Papers / DR LEO 1716, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    7. Bertrand Candelon & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2011. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(2), pages 314-343, Spring.
    8. Bertrand Candelon & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2011. "Backtesting Value-at-Risk: A GMM Duration-Based Test," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(2), pages 314-343, Spring.
    9. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    10. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
    11. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    12. Jorion, Philippe, 1995. " Predicting Volatility in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 50(2), pages 507-528, June.
    13. Jeremy Berkowitz & Peter Christoffersen & Denis Pelletier, 2011. "Evaluating Value-at-Risk Models with Desk-Level Data," Management Science, INFORMS, vol. 57(12), pages 2213-2227, December.
    14. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    15. Pritsker, Matthew, 2006. "The hidden dangers of historical simulation," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 561-582, February.
    16. Harvey, Andrew & Ruiz, Esther & Sentana, Enrique, 1992. "Unobserved component time series models with Arch disturbances," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 129-157.
    17. Thomas H. McCurdy & Ieuan G. Morgan, 1991. "Tests for a Systematic Risk Component in Deviations From Uncovered Interest Rate Parity," Review of Economic Studies, Oxford University Press, vol. 58(3), pages 587-602.
    18. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    19. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    20. Dacorogna, Michael M. & Muller, Ulrich A. & Nagler, Robert J. & Olsen, Richard B. & Pictet, Olivier V., 1993. "A geographical model for the daily and weekly seasonal volatility in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 12(4), pages 413-438, August.
    21. Shane A. Corwin & Marc L. Lipson, 2000. "Order Flow and Liquidity around NYSE Trading Halts," Journal of Finance, American Finance Association, vol. 55(4), pages 1771-1805, August.
    22. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    23. repec:adr:anecst:y:1991:i:24:p:01 is not listed on IDEAS
    24. Yatchew,Adonis, 2003. "Semiparametric Regression for the Applied Econometrician," Cambridge Books, Cambridge University Press, number 9780521812832, Fall.
    25. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Economic Policy Review, Federal Reserve Bank of New York, issue Apr, pages 39-69.
    26. Higgins, Matthew L & Bera, Anil K, 1992. "A Class of Nonlinear ARCH Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(1), pages 137-158, February.
    27. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    28. Peter F. Christoffersen & Francis X. Diebold, 2000. "How Relevant is Volatility Forecasting for Financial Risk Management?," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 12-22, February.
    29. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    30. Bera, Anil K & Higgins, Matthew L, 1997. "ARCH and Bilinearity as Competing Models for Nonlinear Dependence," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 43-50, January.
    31. Thierry Kamionka, 2000. "La Modélisation des Données Haute Fréquence," Working Papers 2000-58, Center for Research in Economics and Statistics.
    32. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    33. Stoll, Hans R & Whaley, Robert E, 1990. "Stock Market Structure and Volatility," Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 37-71.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Market Microstructure; ARCH Models; VaR; Time-Varying Volatility; Forecasting Volatility; Casablanca Stock Exchange.;

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:19482. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.