IDEAS home Printed from https://ideas.repec.org/a/spr/fininn/v10y2024i1d10.1186_s40854-023-00564-5.html
   My bibliography  Save this article

Forecasting VaR and ES by using deep quantile regression, GANs-based scenario generation, and heterogeneous market hypothesis

Author

Listed:
  • Jianzhou Wang

    (Dongbei University of Finance and Economics)

  • Shuai Wang

    (Dongbei University of Finance and Economics)

  • Mengzheng Lv

    (Dongbei University of Finance and Economics)

  • He Jiang

    (Jiangxi University of Finance and Economics)

Abstract

Value at risk (VaR) and expected shortfall (ES) have emerged as standard measures for detecting the market risk of financial assets and play essential roles in investment decisions, external regulations, and risk capital allocation. However, existing VaR estimation approaches fail to accurately reflect downside risks, and the ES estimation technique is quite limited owing to its challenging implementation. This causes financial institutions to overestimate or underestimate investment risk and finally leads to the inefficient allocation of financial resources. The main purpose of this study is to use machine learning to improve the accuracy of VaR estimation and provide an effective tool for ES estimation. Specifically, this study proposes a VaR estimator by combining quantile regression with “Mogrifier” recurrent neural networks to capture the “long memory” and “clustering” properties of financial assets; while for estimating ES, this study directly models the quantile of assets and employs generative adversarial networks to generate future tail risk scenarios. In addition to the typical properties of financial assets, the model design is also consistent with heterogeneous market theory. An empirical application to four major global stock indices shows that our model is superior to other existing models.

Suggested Citation

  • Jianzhou Wang & Shuai Wang & Mengzheng Lv & He Jiang, 2024. "Forecasting VaR and ES by using deep quantile regression, GANs-based scenario generation, and heterogeneous market hypothesis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-35, December.
  • Handle: RePEc:spr:fininn:v:10:y:2024:i:1:d:10.1186_s40854-023-00564-5
    DOI: 10.1186/s40854-023-00564-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40854-023-00564-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40854-023-00564-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuan, Ran & Wang, Bo & Mao, Zhixin & Watada, Junzo, 2021. "Multi-objective wind power scenario forecasting based on PG-GAN," Energy, Elsevier, vol. 226(C).
    2. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
    3. Zhang, Xun & Lai, K.K. & Wang, Shou-Yang, 2008. "A new approach for crude oil price analysis based on Empirical Mode Decomposition," Energy Economics, Elsevier, vol. 30(3), pages 905-918, May.
    4. Nguyen, Linh Hoang & Chevapatrakul, Thanaset & Yao, Kai, 2020. "Investigating tail-risk dependence in the cryptocurrency markets: A LASSO quantile regression approach," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 333-355.
    5. Mingyue Qiu & Yu Song, 2016. "Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-11, May.
    6. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
    7. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    8. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    9. James W. Taylor, 2019. "Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 121-133, January.
    10. Jiang, Ping & Liu, Zhenkun & Wang, Jianzhou & Zhang, Lifang, 2021. "Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm," Resources Policy, Elsevier, vol. 73(C).
    11. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    12. Şener, Emrah & Baronyan, Sayad & Ali Mengütürk, Levent, 2012. "Ranking the predictive performances of value-at-risk estimation methods," International Journal of Forecasting, Elsevier, vol. 28(4), pages 849-873.
    13. Alex Huang, 2013. "Value at risk estimation by quantile regression and kernel estimator," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 225-251, August.
    14. Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
    15. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    16. Michael Grabchak & Eliana Christou, 2021. "A note on calculating expected shortfall for discrete time stochastic volatility models," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-16, December.
    17. Luca Merlo & Lea Petrella & Valentina Raponi, 2021. "Forecasting VaR and ES using a joint quantile regression and implications in portfolio allocation," Papers 2106.06518, arXiv.org.
    18. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    19. Li, Youjuan & Liu, Yufeng & Zhu, Ji, 2007. "Quantile Regression in Reproducing Kernel Hilbert Spaces," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 255-268, March.
    20. Ngozi G. Emenogu & Monday Osagie Adenomon & Nwaze Obini Nweze, 2020. "On the volatility of daily stock returns of Total Nigeria Plc: evidence from GARCH models, value-at-risk and backtesting," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-25, December.
    21. Guo, Jingjun & Zhao, Zhengling & Sun, Jingyun & Sun, Shaolong, 2022. "Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework," Resources Policy, Elsevier, vol. 77(C).
    22. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    23. Merlo, Luca & Petrella, Lea & Raponi, Valentina, 2021. "Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation," Journal of Banking & Finance, Elsevier, vol. 133(C).
    24. Tobias Fissler & Johanna F. Ziegel & Tilmann Gneiting, 2015. "Expected Shortfall is jointly elicitable with Value at Risk - Implications for backtesting," Papers 1507.00244, arXiv.org, revised Jul 2015.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federico Gatta & Fabrizio Lillo & Piero Mazzarisi, 2024. "CAESar: Conditional Autoregressive Expected Shortfall," Papers 2407.06619, arXiv.org.
    2. Merlo, Luca & Petrella, Lea & Raponi, Valentina, 2021. "Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation," Journal of Banking & Finance, Elsevier, vol. 133(C).
    3. Luca Merlo & Lea Petrella & Valentina Raponi, 2021. "Forecasting VaR and ES using a joint quantile regression and implications in portfolio allocation," Papers 2106.06518, arXiv.org.
    4. Taylor, James W., 2022. "Forecasting Value at Risk and expected shortfall using a model with a dynamic omega ratio," Journal of Banking & Finance, Elsevier, vol. 140(C).
    5. Catania, Leopoldo & Luati, Alessandra, 2025. "Quasi Maximum Likelihood Estimation of Value at Risk and Expected Shortfall," Econometrics and Statistics, Elsevier, vol. 33(C), pages 23-34.
    6. Taylor, James W., 2020. "Forecast combinations for value at risk and expected shortfall," International Journal of Forecasting, Elsevier, vol. 36(2), pages 428-441.
    7. Qifa Xu & Lu Chen & Cuixia Jiang & Yezheng Liu, 2022. "Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 407-421, April.
    8. Li, Dan & Clements, Adam & Drovandi, Christopher, 2023. "A Bayesian approach for more reliable tail risk forecasts," Journal of Financial Stability, Elsevier, vol. 64(C).
    9. Le, Trung H., 2020. "Forecasting value at risk and expected shortfall with mixed data sampling," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1362-1379.
    10. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    11. d’Addona, Stefano & Khanom, Najrin, 2022. "Estimating tail-risk using semiparametric conditional variance with an application to meme stocks," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 241-260.
    12. Timo Dimitriadis & iaochun Liu & Julie Schnaitmann, 2023. "Encompassing Tests for Value at Risk and Expected Shortfall Multistep Forecasts Based on Inference on the Boundary," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 412-444.
    13. Yun Feng & Weijie Hou & Yuping Song, 2024. "Tail risk forecasting and its application to margin requirements in the commodity futures market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1513-1529, August.
    14. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    15. Zhengkun Li & Minh-Ngoc Tran & Chao Wang & Richard Gerlach & Junbin Gao, 2020. "A Bayesian Long Short-Term Memory Model for Value at Risk and Expected Shortfall Joint Forecasting," Papers 2001.08374, arXiv.org, revised May 2021.
    16. Arturo Leccadito & Alessandro Staino & Pietro Toscano, 2024. "A novel robust method for estimating the covariance matrix of financial returns with applications to risk management," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-28, December.
    17. Storti, Giuseppe & Wang, Chao, 2022. "A multivariate semi-parametric portfolio risk optimization and forecasting framework," MPRA Paper 115266, University Library of Munich, Germany.
    18. So Yeon Chun & Alexander Shapiro & Stan Uryasev, 2012. "Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics," Operations Research, INFORMS, vol. 60(4), pages 739-756, August.
    19. Jie Wang & Yongqiao Wang, 2025. "Forecasting Expected Shortfall and Value‐at‐Risk With Cross‐Sectional Aggregation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 391-423, March.
    20. Owusu Junior, Peterson & Alagidede, Imhotep, 2020. "Risks in emerging markets equities: Time-varying versus spatial risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fininn:v:10:y:2024:i:1:d:10.1186_s40854-023-00564-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.