IDEAS home Printed from
   My bibliography  Save this paper

Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics


  • Chun, So Yeon
  • Shapiro, Alexander
  • Uryasev, Stan


We discuss linear regression approaches to conditional Value-at-Risk and Average Value-at-Risk (Conditional Value-at-Risk, Expected Shortfall) risk measures. Two estimation procedures are considered for each conditional risk measure, one is direct and the other is based on residual analysis of the standard least squares method. Large sample statistical inference of the estimators obtained is derived. Furthermore, finite sample properties of the proposed estimators are investigated and compared with theoretical derivations in an extensive Monte Carlo study. Empirical results on the real-data (different financial asset classes) are also provided to illustrate the performance of the estimators.

Suggested Citation

  • Chun, So Yeon & Shapiro, Alexander & Uryasev, Stan, 2011. "Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics," MPRA Paper 30132, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:30132

    Download full text from publisher

    File URL:
    File Function: original version
    Download Restriction: no

    File URL:
    File Function: revised version
    Download Restriction: no

    References listed on IDEAS

    1. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value-at-Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
    2. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
    3. Trindade, A. Alexandre & Uryasev, Stan & Shapiro, Alexander & Zrazhevsky, Grigory, 2007. "Financial prediction with constrained tail risk," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3524-3538, November.
    4. Len Umantsev & Victor Chernozhukov, 2001. "Conditional value-at-risk: Aspects of modeling and estimation," Empirical Economics, Springer, vol. 26(1), pages 271-292.
    5. Franco Peracchi & Andrei V. Tanase, 2008. "On estimating the conditional expected shortfall," CEIS Research Paper 122, Tor Vergata University, CEIS, revised 14 Jul 2008.
    6. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    7. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    8. Jackson, Patricia & Perraudin, William, 2000. "Regulatory implications of credit risk modelling," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 1-14, January.
    9. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, December.
    10. Song Xi Chen, 2005. "Nonparametric Inference of Value-at-Risk for Dependent Financial Returns," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(2), pages 227-255.
    11. Leorato, Samantha & Peracchi, Franco & Tanase, Andrei V., 2012. "Asymptotically efficient estimation of the conditional expected shortfall," Computational Statistics & Data Analysis, Elsevier, pages 768-784.
    12. Olivier SCAILLET, 2004. "Nonparametric Estimation of Conditional Expected Shortfall," FAME Research Paper Series rp112, International Center for Financial Asset Management and Engineering.
    13. O. Scaillet, 2004. "Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 115-129.
    14. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    15. Frey, Rudiger & McNeil, Alexander J., 2002. "VaR and expected shortfall in portfolios of dependent credit risks: Conceptual and practical insights," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1317-1334, July.
    16. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    17. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Chen Yi-Ting & Sun Edward W. & Yu Min-Teh, 2015. "Improving model performance with the integrated wavelet denoising method," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(4), pages 445-467, September.
    2. Natalia Nolde & Johanna F. Ziegel, 2016. "Elicitability and backtesting: Perspectives for banking regulation," Papers 1608.05498,, revised Feb 2017.
    3. Tatiana Labopin-Richard & Fabrice Gamboa & Aur'elien Garivier & Bertrand Iooss, 2014. "Bregman superquantiles. Estimation methods and applications," Papers 1405.6677,, revised Jan 2016.
    4. Rockafellar, R.T. & Royset, J.O. & Miranda, S.I., 2014. "Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk," European Journal of Operational Research, Elsevier, vol. 234(1), pages 140-154.
    5. Labopin-Richard T. & Gamboa F. & Garivier A. & Iooss B., 2016. "Bregman superquantiles. Estimation methods and applications," Dependence Modeling, De Gruyter Open, vol. 4(1), pages 1-33, March.
    6. Johanna F. Ziegel, 2013. "Coherence and elicitability," Papers 1303.1690,, revised Mar 2014.

    More about this item


    Value-at-Risk; Average Value-at-Risk; Conditional Value-at-Risk; Expected Shortfall; linear regression; least squares residual; quantile regression; conditional risk measures; statistical inference;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:30132. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.