IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Asymptotically efficient estimation of the conditional expected shortfall

  • Leorato, Samantha
  • Peracchi, Franco
  • Tanase, Andrei V.

A procedure for efficient estimation of the trimmed mean of a random variable conditional on a set of covariates is proposed. For concreteness, the focus is on a financial application where the trimmed mean of interest corresponds to the conditional expected shortfall, which is known to be a coherent risk measure. The proposed class of estimators is based on representing the estimator as an integral of the conditional quantile function. Relative to the simple analog estimator that weights all conditional quantiles equally, asymptotic efficiency gains may be attained by giving different weights to the different conditional quantiles while penalizing excessive departures from uniform weighting. The approach presented here allows for either parametric or nonparametric modeling of the conditional quantiles and the weights, but is essentially nonparametric in spirit. The asymptotic properties of the proposed class of estimators are established. Their finite sample properties are illustrated through a set of Monte Carlo experiments and an empirical application11The Stata and Matlab codes used in the simulations and in the empirical analysis are available as annexes to the electronic version of the paper..

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S016794731100079X
Download Restriction: Full text for ScienceDirect subscribers only.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

Volume (Year): 56 (2012)
Issue (Month): 4 ()
Pages: 768-784

as
in new window

Handle: RePEc:eee:csdana:v:56:y:2012:i:4:p:768-784
Contact details of provider: Web page: http://www.elsevier.com/locate/csda

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Fitzenberger, Bernd, 1998. "The moving blocks bootstrap and robust inference for linear least squares and quantile regressions," Journal of Econometrics, Elsevier, vol. 82(2), pages 235-287, February.
  2. Moller, Jan Kloppenborg & Nielsen, Henrik Aalborg & Madsen, Henrik, 2008. "Time-adaptive quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1292-1303, January.
  3. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
  4. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
  5. repec:cup:cbooks:9780521608275 is not listed on IDEAS
  6. Peracchi, Franco, 2002. "On estimating conditional quantiles and distribution functions," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 433-447, February.
  7. Peter Hall & Rodney C. L. Wolff & Qiwei Yao, 1999. "Methods for estimating a conditional distribution function," LSE Research Online Documents on Economics 6631, London School of Economics and Political Science, LSE Library.
  8. Bertsimas, Dimitris & Lauprete, Geoffrey J. & Samarov, Alexander, 2004. "Shortfall as a risk measure: properties, optimization and applications," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1353-1381, April.
  9. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, 03.
  10. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
  11. Huixia Judy Wang & Xiao-Hua Zhou, 2010. "Estimation of the retransformed conditional mean in health care cost studies," Biometrika, Biometrika Trust, vol. 97(1), pages 147-158.
  12. Foresi, S. & Paracchi, F., 1992. "The Conditional Distribution of Excess Returns: An Empirical Analysis," Working Papers 92-49, C.V. Starr Center for Applied Economics, New York University.
  13. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
  14. Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves without Crossing," Sciences Po publications info:hdl:2441/5rkqqmvrn4t, Sciences Po.
  15. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
  16. Franco Peracchi & Andrei V. Tanase, 2008. "On estimating the conditional expected shortfall," CEIS Research Paper 122, Tor Vergata University, CEIS, revised 14 Jul 2008.
  17. repec:cup:cbooks:9780521845731 is not listed on IDEAS
  18. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
  19. Cai, Zongwu, 2002. "Regression Quantiles For Time Series," Econometric Theory, Cambridge University Press, vol. 18(01), pages 169-192, February.
  20. Giuseppe De Luca, 2008. "SNP and SML estimation of univariate and bivariate binary-choice models," Stata Journal, StataCorp LP, vol. 8(2), pages 190-220, June.
  21. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
  22. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
  23. Toshio Honda, 2000. "Nonparametric Estimation of a Conditional Quantile for α-Mixing Processes," Annals of the Institute of Statistical Mathematics, Springer, vol. 52(3), pages 459-470, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:4:p:768-784. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.