IDEAS home Printed from
   My bibliography  Save this paper

Distributional vs. Quantile Regression




Given a scalar random variable Y and a random vector X defined on the same probability space, the conditional distribution of Y given X can be represented by either the conditional distribution function or the conditional quantile function. To these equivalent representations correspond two alternative approaches to estimation. One approach, distributional regression (DR), is based on direct estimation of the conditional distribution function; the other approach, quantile regression (QR), is instead based on direct estimation of the conditional quantile function. Indirect estimates of the conditional quantile function and the conditional distribution function may then be obtained by inverting the direct estimates obtained from either approach. Despite the growing attention to the DR approach, and the vast literature on the QR approach, the link between the two approaches has not been explored in detail. The aim of this paper is to fill-in this gap by providing a better understanding of the relative performance of the two approaches, both asymptotically and in finite samples, under the linear location model and certain types of heteroskedastic location-scale models.

Suggested Citation

  • Roger Koenker & Samantha Leorato & Franco Peracchi, 2013. "Distributional vs. Quantile Regression," CEIS Research Paper 300, Tor Vergata University, CEIS, revised 17 Dec 2013.
  • Handle: RePEc:rtv:ceisrp:300

    Download full text from publisher

    File URL:
    File Function: Main text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    2. Christoph Rothe, 2012. "Partial Distributional Policy Effects," Econometrica, Econometric Society, vol. 80(5), pages 2269-2301, September.
    3. Christoph Rothe & Dominik Wied, 2013. "Misspecification Testing in a Class of Conditional Distributional Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 314-324, March.
    4. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, Elsevier.
    5. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    6. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    7. Peracchi, Franco, 2002. "On estimating conditional quantiles and distribution functions," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 433-447, February.
    8. Holger Dette & Stanislav Volgushev, 2008. "Non-crossing non-parametric estimates of quantile curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 609-627.
    9. Foresi, S. & Paracchi, F., 1992. "The Conditional Distribution of Excess Returns: An Empirical Analysis," Working Papers 92-49, C.V. Starr Center for Applied Economics, New York University.
    10. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    11. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
    12. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
    13. Roger Koenker & Zhijie Xiao, 2002. "Inference on the Quantile Regression Process," Econometrica, Econometric Society, vol. 70(4), pages 1583-1612, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Samantha Leorato & Franco Peracchi, 2015. "Comparing Distribution and Quantile Regression," EIEF Working Papers Series 1511, Einaudi Institute for Economics and Finance (EIEF), revised Oct 2015.
    2. Richey, Jeremiah & Rosburg, Alicia, 2016. "Understanding intergenerational economic mobility by decomposing joint distributions," MPRA Paper 72665, University Library of Munich, Germany.
    3. Richey, Jeremiah & Rosburg, Alicia, 2015. "Decomposing economic mobility transition matrices," MPRA Paper 66485, University Library of Munich, Germany.
    4. repec:gam:jeners:v:10:y:2017:i:9:p:1402-:d:111989 is not listed on IDEAS
    5. Franco Peracchi & Samantha Leorato, 2015. "Shape Regressions," Working Papers gueconwpa~15-15-06, Georgetown University, Department of Economics.
    6. Ferreira, Francisco H. G. & Firpo, Sergio & Galvao, Antonio F., 2017. "Estimation and Inference for Actual and Counterfactual Growth Incidence Curves," IZA Discussion Papers 10473, Institute for the Study of Labor (IZA).
    7. García, A., 2016. "Oaxaca-Blinder Type Counterfactual Decomposition Methods for Duration Outcomes," DOCUMENTOS DE TRABAJO 014186, UNIVERSIDAD DEL ROSARIO.
    8. Philippe Van Kerm & Seunghee Yu & Chung Choe, 2016. "Decomposing quantile wage gaps: a conditional likelihood approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 507-527, August.
    9. Kolodziej, Ingo W.K. & García-Gómez, Pilar, 2017. "The causal effects of retirement on mental health: Looking beyond the mean effects," Ruhr Economic Papers 668, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    10. Ying-Ying Lee, 2015. "Interpretation and Semiparametric Efficiency in Quantile Regression under Misspecification," Econometrics, MDPI, Open Access Journal, vol. 4(1), pages 1-14, December.
    11. Kaspar Wüthrich, 2015. "Semiparametric estimation of quantile treatment effects with endogeneity," Diskussionsschriften dp1509, Universitaet Bern, Departement Volkswirtschaft.

    More about this item


    Quantile regression; distributional regression; functional Delta-method; asymptotic relative efficiency; linear location model; location-scale models.;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rtv:ceisrp:300. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Barbara Piazzi). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.