IDEAS home Printed from
   My bibliography  Save this paper

Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes


  • Victor Chernozhukov
  • Iv'an Fern'andez-Val
  • Blaise Melly
  • Kaspar Wuthrich


Quantile and quantile effect functions are important tools for descriptive and causal analyses due to their natural and intuitive interpretation. Existing inference methods for these functions do not apply to discrete random variables. This paper offers a simple, practical construction of simultaneous confidence bands for quantile and quantile effect functions of possibly discrete random variables. It is based on a natural transformation of simultaneous confidence bands for distribution functions, which are readily available for many problems. The construction is generic and does not depend on the nature of the underlying problem. It works in conjunction with parametric, semiparametric, and nonparametric modeling methods for observed and counterfactual distributions, and does not depend on the sampling scheme. We apply our method to characterize the distributional impact of insurance coverage on health care utilization and obtain the distributional decomposition of the racial test score gap. We find that universal insurance coverage increases the number of doctor visits across the entire distribution, and that the racial test score gap is small at early ages but grows with age due to socio economic factors affecting child development especially at the top of the distribution. These are new, interesting empirical findings that complement previous analyses that focused on mean effects only. In both applications, the outcomes of interest are discrete rendering existing inference methods invalid for obtaining uniform confidence bands for observed and counterfactual quantile functions and for their difference -- the quantile effects functions.

Suggested Citation

  • Victor Chernozhukov & Iv'an Fern'andez-Val & Blaise Melly & Kaspar Wuthrich, 2016. "Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes," Papers 1608.05142,, revised Aug 2018.
  • Handle: RePEc:arx:papers:1608.05142

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Machado, Jose A.F. & Silva, J. M. C. Santos, 2005. "Quantiles for Counts," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1226-1237, December.
    2. Frandsen, Brigham R. & Frölich, Markus & Melly, Blaise, 2012. "Quantile treatment effects in the regression discontinuity design," Journal of Econometrics, Elsevier, vol. 168(2), pages 382-395.
    3. Donald, Stephen G. & Hsu, Yu-Chin, 2014. "Estimation and inference for distribution functions and quantile functions in treatment effect models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 383-397.
    4. V. Chernozhukov & I. Fernández-Val & A. Galichon, 2009. "Improving point and interval estimators of monotone functions by rearrangement," Biometrika, Biometrika Trust, vol. 96(3), pages 559-575.
    5. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    6. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    7. Roland G. Fryer & Steven D. Levitt, 2013. "Testing for Racial Differences in the Mental Ability of Young Children," American Economic Review, American Economic Association, vol. 103(2), pages 981-1005, April.
    8. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
    9. Christoph Rothe & Dominik Wied, 2013. "Misspecification Testing in a Class of Conditional Distributional Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 314-324, March.
    10. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val, 2011. "Conditional quantile processes based on series or many regressors," CeMMAP working papers CWP19/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Joshua Angrist & Eric Bettinger & Michael Kremer, 2006. "Long-Term Educational Consequences of Secondary School Vouchers: Evidence from Administrative Records in Colombia," American Economic Review, American Economic Association, vol. 96(3), pages 847-862, June.
    12. Amy Finkelstein & Sarah Taubman & Bill Wright & Mira Bernstein & Jonathan Gruber & Joseph P. Newhouse & Heidi Allen & Katherine Baicker, 2012. "The Oregon Health Insurance Experiment: Evidence from the First Year," The Quarterly Journal of Economics, Oxford University Press, vol. 127(3), pages 1057-1106.
    13. Qu, Zhongjun & Yoon, Jungmo, 2015. "Nonparametric estimation and inference on conditional quantile processes," Journal of Econometrics, Elsevier, vol. 185(1), pages 1-19.
    14. Larocque, Denis & Randles, Ronald H., 2008. "Confidence Intervals for a Discrete Population Median," The American Statistician, American Statistical Association, vol. 62, pages 32-39, February.
    15. Roger Koenker & Zhijie Xiao, 2002. "Inference on the Quantile Regression Process," Econometrica, Econometric Society, vol. 70(4), pages 1583-1612, July.
    16. Yu-Chin Hsu & Robert P. Lieli & Tsung-Chih Lai, 2015. "Estimation and Inference for Distribution Functions and Quantile Functions in Endogenous Treatment Effect Models," IEAS Working Paper : academic research 15-A003, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    17. Katherine Baicker & Amy Finkelstein & Jae Song & Sarah Taubman, 2014. "The Impact of Medicaid on Labor Market Activity and Program Participation: Evidence from the Oregon Health Insurance Experiment," American Economic Review, American Economic Association, vol. 104(5), pages 322-328, May.
    18. Winkelmann, Rainer, 2006. "Reforming health care: Evidence from quantile regressions for counts," Journal of Health Economics, Elsevier, vol. 25(1), pages 131-145, January.
    19. Cheng, Guang & Yu, Zhuqing & Huang, Jianhua Z., 2013. "The cluster bootstrap consistency in generalized estimating equations," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 33-47.
    20. Junni L. Zhang & Donald B. Rubin, 2003. "Estimation of Causal Effects via Principal Stratification When Some Outcomes are Truncated by “Deathâ€," Journal of Educational and Behavioral Statistics, , vol. 28(4), pages 353-368, December.
    21. Yanyuan Ma & Marc Genton & Emanuel Parzen, 2011. "Asymptotic properties of sample quantiles of discrete distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 227-243, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Victor Chernozhukov & Ivan Fernandez-Val & Whitney K. Newey & Sami Stouli & Francis Vella, 2017. "Semiparametric estimation of structural functions in nonseparable triangular models," CeMMAP working papers CWP48/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Victor Chernozhukov & Iv'an Fern'andez-Val & Martin Weidner, 2018. "Network and Panel Quantile Effects Via Distribution Regression," Papers 1803.08154,

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1608.05142. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.