IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v151y2009i1p82-97.html
   My bibliography  Save this article

Local structural quantile effects in a model with a nonseparable control variable

Author

Listed:
  • Jun, Sung Jae

Abstract

I consider a semiparametric version of the nonseparable triangular model of Chesher [Chesher, A., 2003. Identification in nonseparable models. Econometrica 71, 1405-1441]. The proposed model is linear in coefficients, where the coefficients are unknown functions of unobserved latent variables. Using a control variable idea and quantile regression methods, I propose a simple two-step estimator for the coefficients evaluated at particular values of the latent variables. Under the condition that the instruments are locally relevant (i.e. they affect a particular conditional quantile of interest of the endogenous variable) I establish consistency and asymptotic normality. Simulation experiments confirm the theoretical results.

Suggested Citation

  • Jun, Sung Jae, 2009. "Local structural quantile effects in a model with a nonseparable control variable," Journal of Econometrics, Elsevier, vol. 151(1), pages 82-97, July.
  • Handle: RePEc:eee:econom:v:151:y:2009:i:1:p:82-97
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00073-6
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Chesher, 2003. "Identification in Nonseparable Models," Econometrica, Econometric Society, vol. 71(5), pages 1405-1441, September.
    2. J. P. Florens & J. J. Heckman & C. Meghir & E. Vytlacil, 2008. "Identification of Treatment Effects Using Control Functions in Models With Continuous, Endogenous Treatment and Heterogeneous Effects," Econometrica, Econometric Society, vol. 76(5), pages 1191-1206, September.
    3. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    4. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    5. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643, April.
    6. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    7. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    8. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    9. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    10. Jun, Sung Jae, 2008. "Weak identification robust tests in an instrumental quantile model," Journal of Econometrics, Elsevier, vol. 144(1), pages 118-138, May.
    11. Lee, Sokbae, 2007. "Endogeneity in quantile regression models: A control function approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 1131-1158, December.
    12. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, Oxford University Press, vol. 106(4), pages 979-1014.
    13. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    14. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
    15. Andrew Chesher, 2005. "Nonparametric Identification under Discrete Variation," Econometrica, Econometric Society, vol. 73(5), pages 1525-1550, September.
    16. Roger Koenker & Zhijie Xiao, 2002. "Inference on the Quantile Regression Process," Econometrica, Econometric Society, vol. 70(4), pages 1583-1612, July.
    17. Chernozhukov, Victor & Hansen, Christian, 2006. "Instrumental quantile regression inference for structural and treatment effect models," Journal of Econometrics, Elsevier, vol. 132(2), pages 491-525, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chernozhukov, Victor & Fernández-Val, Iván & Kowalski, Amanda E., 2015. "Quantile regression with censoring and endogeneity," Journal of Econometrics, Elsevier, vol. 186(1), pages 201-221.
    2. Jun, Sung Jae & Pinkse, Joris & Xu, Haiqing, 2011. "Tighter bounds in triangular systems," Journal of Econometrics, Elsevier, vol. 161(2), pages 122-128, April.
    3. Victor Chernozhukov & Iván Fernández-Val & Whitney Newey & Sami Stouli & Francis Vella, 2017. "Semiparametric Estimation of Structural Functions in Nonseparable Triangular Models," Bristol Economics Discussion Papers 17/690, Department of Economics, University of Bristol, UK.
    4. Hoderlein, Stefan & Holzmann, Hajo & Meister, Alexander, 2017. "The triangular model with random coefficients," Journal of Econometrics, Elsevier, vol. 201(1), pages 144-169.
    5. Nese Yildiz, 2012. "Estimation of Binary Choice Models with Linear Index and Dummy Endogenous Variables," Koç University-TUSIAD Economic Research Forum Working Papers 1202, Koc University-TUSIAD Economic Research Forum.
    6. Henderson, Daniel J. & Kumbhakar, Subal C. & Li, Qi & Parmeter, Christopher F., 2015. "Smooth coefficient estimation of a seemingly unrelated regression," Journal of Econometrics, Elsevier, vol. 189(1), pages 148-162.
    7. Santiago Pereda Fernández, 2016. "Estimation of counterfactual distributions with a continuous endogenous treatment," Temi di discussione (Economic working papers) 1053, Bank of Italy, Economic Research and International Relations Area.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:151:y:2009:i:1:p:82-97. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.