IDEAS home Printed from https://ideas.repec.org/p/ucd/wpaper/200832.html
   My bibliography  Save this paper

Identification of Treatment Effects Using Control Functions in Models with Continuous, Endogenous Treatment and Heterogeneous Effects

Author

Listed:
  • J.P. Florensy

    (IDEI, Toulouse)

  • J. J. Heckmanz

    (University of Chicago and University College Dublin)

  • C. Meghirx

    (IFS and UCL)

  • E. Vytlacil

    (Yale University)

Abstract

We use the control function approach to identify the average treatment effect and the effect of treatment on the treated in models with a continuous endogenous regressor whose impact is heterogeneous. We assume a stochastic polynomial restriction on the form of the heterogeneity but, unlike alternative nonparametric control function approaches, our approach does not require large support assumptions.

Suggested Citation

  • J.P. Florensy & J. J. Heckmanz & C. Meghirx & E. Vytlacil, 2008. "Identification of Treatment Effects Using Control Functions in Models with Continuous, Endogenous Treatment and Heterogeneous Effects," Working Papers 200832, Geary Institute, University College Dublin.
  • Handle: RePEc:ucd:wpaper:200832
    as

    Download full text from publisher

    File URL: http://www.ucd.ie/geary/static/publications/workingpapers/gearywp200832.pdf
    File Function: First version, 2008
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    2. Wooldridge, Jeffrey M., 2003. "Further results on instrumental variables estimation of average treatment effects in the correlated random coefficient model," Economics Letters, Elsevier, vol. 79(2), pages 185-191, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferreira, Maria & de Grip, Andries & van der Velden, Rolf, 2018. "Does informal learning at work differ between temporary and permanent workers? Evidence from 20 OECD countries," Labour Economics, Elsevier, vol. 55(C), pages 18-40.
    2. Klein, Tobias J., 2010. "Heterogeneous treatment effects: Instrumental variables without monotonicity?," Journal of Econometrics, Elsevier, vol. 155(2), pages 99-116, April.
    3. Belzil, Christian & Hansen, Jörgen, 2005. "A Structural Analysis of the Correlated Random Coefficient Wage Regression Model with an Application to the OLS-IV Puzzle," IZA Discussion Papers 1585, Institute of Labor Economics (IZA).
    4. John K. Dagsvik & TorbjØrn HÆgeland & Arvid Raknerud, 2011. "Estimating the returns to schooling: a likelihood approach based on normal mixtures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(4), pages 613-640, June.
    5. Li, Mingliang & Tobias, Justin L., 2011. "Bayesian inference in a correlated random coefficients model: Modeling causal effect heterogeneity with an application to heterogeneous returns to schooling," Journal of Econometrics, Elsevier, vol. 162(2), pages 345-361, June.
    6. Murtazashvili, Irina & Wooldridge, Jeffrey M., 2008. "Fixed effects instrumental variables estimation in correlated random coefficient panel data models," Journal of Econometrics, Elsevier, vol. 142(1), pages 539-552, January.
    7. Victor Aguirregabiria, 2006. "Another Look at the Identification of Dynamic Discrete Decision Processes: With an Application to Retirement Behavior," 2006 Meeting Papers 169, Society for Economic Dynamics.
    8. Eibich, Peter & Siedler, Thomas, 2020. "Retirement, intergenerational time transfers, and fertility," European Economic Review, Elsevier, vol. 124(C).
    9. P.A.V.B. Swamy & I-Lok Chang & Jatinder S. Mehta & William H. Greene & Stephen G. Hall & George S. Tavlas, 2016. "Removing Specification Errors from the Usual Formulation of Binary Choice Models," Econometrics, MDPI, Open Access Journal, vol. 4(2), pages 1-21, June.
    10. González-Uribe, Juanita & Reyes, Santiago, 2021. "Identifying and boosting “Gazelles”: Evidence from business accelerators," Journal of Financial Economics, Elsevier, vol. 139(1), pages 260-287.
    11. Corak, Miles & Lauzon, Darren, 2009. "Differences in the distribution of high school achievement: The role of class-size and time-in-term," Economics of Education Review, Elsevier, vol. 28(2), pages 189-198, April.
    12. Heckman, James J. & Urzúa, Sergio, 2010. "Comparing IV with structural models: What simple IV can and cannot identify," Journal of Econometrics, Elsevier, vol. 156(1), pages 27-37, May.
    13. Enno Mammen & Christoph Rothe & Melanie Schienle, 2012. "Generated Covariates in Nonparametric Estimation: A Short Review," SFB 649 Discussion Papers SFB649DP2012-042, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    14. Wong, Maisy, 2010. "The Relationship between Marginal Willingness-to-Pay in the Hedonic and Discrete Choice Models," MPRA Paper 51218, University Library of Munich, Germany.
    15. Jean-Marc Robin & Costas Meghir & Christian Dustmann & Jerome Adda, 2013. "Career Progression, Economic Downturns, and Skills," 2013 Meeting Papers 993, Society for Economic Dynamics.
    16. Joshua D. Angrist, 2004. "Treatment effect heterogeneity in theory and practice," Economic Journal, Royal Economic Society, vol. 114(494), pages 52-83, March.
    17. Christian Dippel & Robert Gold & Stephan Heblich & Rodrigo Pinto, 2017. "Instrumental Variables and Causal Mechanisms: Unpacking the Effect of Trade on Workers and Voters," CESifo Working Paper Series 6816, CESifo.
    18. Adda & Dustmann, 2004. "Career Progression and Formal versus on the Job Training," Econometric Society 2004 North American Winter Meetings 492, Econometric Society.
    19. Aakvik, Arild & Salvanes, Kjell G. & Vaage, Kjell, 2010. "Measuring heterogeneity in the returns to education using an education reform," European Economic Review, Elsevier, vol. 54(4), pages 483-500, May.
    20. Aliou Diagne & Steven Glover & Ben Groom & Jonathan Phillips, 2012. "Africa's Green Revolution? The determinants of the adoption of NERICAs in West Africa," Working Papers 174, Department of Economics, SOAS, University of London, UK.

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucd:wpaper:200832. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/geucdie.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geary Tech (email available below). General contact details of provider: https://edirc.repec.org/data/geucdie.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.