IDEAS home Printed from https://ideas.repec.org/e/pju58.html
   My authors  Follow this author

Sung Jae Jun

Personal Details

First Name:Sung Jae
Middle Name:
Last Name:Jun
Suffix:
RePEc Short-ID:pju58
http://www.econ.psu.edu/~suj14
Terminal Degree:2006 Economics Department; Brown University (from RePEc Genealogy)

Affiliation

Department of Economics
Pennsylvania State University

State College, Pennsylvania (United States)
http://econ.la.psu.edu/

: (814)865-1456
(814)863-4775
608 Kern Graduate Building, University Park, PA 16802-3306
RePEc:edi:depsuus (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Sung Jae Jun & Tony Lancaster, 2006. "Bayesian quantile regression," CeMMAP working papers CWP05/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

Articles

  1. Jun, Sung Jae & Pinkse, Joris & Xu, Haiqing, 2011. "Tighter bounds in triangular systems," Journal of Econometrics, Elsevier, vol. 161(2), pages 122-128, April.
  2. Jun, Sung Jae & Pinkse, Joris & Wan, Yuanyuan, 2011. "-Consistent robust integration-based estimation," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 828-846, April.
  3. Tony Lancaster & Sung Jae Jun, 2010. "Bayesian quantile regression methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 287-307.
  4. Jun, Sung Jae & Pinkse, Joris & Wan, Yuanyuan, 2010. "A consistent nonparametric test of affiliation in auction models," Journal of Econometrics, Elsevier, vol. 159(1), pages 46-54, November.
  5. Jun, Sung Jae & Pinkse, Joris, 2009. "Semiparametric tests of conditional moment restrictions under weak or partial identification," Journal of Econometrics, Elsevier, vol. 152(1), pages 3-18, September.
  6. Jun, Sung Jae & Pinkse, Joris, 2009. "Efficient Semiparametric Seemingly Unrelated Quantile Regression Estimation," Econometric Theory, Cambridge University Press, vol. 25(05), pages 1392-1414, October.
  7. Jun, Sung Jae & Pinkse, Joris, 2009. "Adding Regressors To Obtain Efficiency," Econometric Theory, Cambridge University Press, vol. 25(01), pages 298-301, February.
  8. Jun, Sung Jae, 2009. "Local structural quantile effects in a model with a nonseparable control variable," Journal of Econometrics, Elsevier, vol. 151(1), pages 82-97, July.
  9. Jun, Sung Jae, 2008. "Weak identification robust tests in an instrumental quantile model," Journal of Econometrics, Elsevier, vol. 144(1), pages 118-138, May.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Wikipedia mentions

(Only mentions on Wikipedia that link back to a page on a RePEc service)
  1. Tony Lancaster & Sung Jae Jun, 2010. "Bayesian quantile regression methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 287-307.

    Mentioned in:

    1. Bayesian quantile regression methods (JAE 2010) in ReplicationWiki ()

Working papers

  1. Sung Jae Jun & Tony Lancaster, 2006. "Bayesian quantile regression," CeMMAP working papers CWP05/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    Cited by:

    1. Giuseppe Ragusa, 2007. "Bayesian Likelihoods for Moment Condition Models," Working Papers 060714, University of California-Irvine, Department of Economics.

Articles

  1. Jun, Sung Jae & Pinkse, Joris & Xu, Haiqing, 2011. "Tighter bounds in triangular systems," Journal of Econometrics, Elsevier, vol. 161(2), pages 122-128, April.

    Cited by:

    1. Stefan Hoderlein & Yuya Sasaki, 2013. "Outcome Conditioned Treatment Effects," Boston College Working Papers in Economics 840, Boston College Department of Economics.
    2. Kasy, Maximilian, "undated". "Instrumental variables with unrestricted heterogeneity and continuous treatment - DON'T CITE! SEE ERRATUM BELOW," Working Paper 33257, Harvard University OpenScholar.
    3. Rothe, Christoph, 2011. "Partial Distributional Policy Effects," IZA Discussion Papers 6076, Institute for the Study of Labor (IZA).
    4. Sung Jae Jun & Joris Pinkse & Haiqing Xu & Nese Yildiz, 2012. "Identification of treatment effects in a triangular system of equations," Department of Economics Working Papers 130910, The University of Texas at Austin, Department of Economics, revised Oct 2012.
    5. Liu, Nianqing & Vuong, Quang & Xu, Haiqing, 2017. "Rationalization and identification of binary games with correlated types," Journal of Econometrics, Elsevier, vol. 201(2), pages 249-268.
    6. Andrew Chesher & Konrad Smolinski, 2010. "Sharp identified sets for discrete variable IV models," CeMMAP working papers CWP11/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Desire Kedagni & Ismael Mourifie, 2014. "Tightening Bounds In Triangular Systems," Working Papers tecipa-515, University of Toronto, Department of Economics.
    8. Wooyoung Kim & Koohyun Kwon & Soonwoo Kwon & Sokbae (Simon) Lee, 2014. "The identification power of smoothness assumptions in models with counterfactual outcomes," CeMMAP working papers CWP17/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Andrew Chesher & Adam Rosen, 2012. "Simultaneous equations for discrete outcomes: coherence, completeness, and identification," CeMMAP working papers CWP21/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Lee, Jinhyun, 2013. "Sharp Bounds on Heterogeneous Individual Treatment Responses," SIRE Discussion Papers 2013-89, Scottish Institute for Research in Economics (SIRE).
    11. Maximilian Kasy, 2014. "Instrumental Variables with Unrestricted Heterogeneity and Continuous Treatment," Review of Economic Studies, Oxford University Press, vol. 81(4), pages 1614-1636.
    12. Jinhyun Lee, 2013. "Sharp Bounds on Heterogeneous Individual Treatment Responses," Discussion Paper Series, Department of Economics 201310, Department of Economics, University of St. Andrews.
    13. Sung Jae Jun & Joris Pinkse & Haiqing Xu & Neşe Yıldız, 2016. "Multiple Discrete Endogenous Variables in Weakly-Separable Triangular Models," Econometrics, MDPI, Open Access Journal, vol. 4(1), pages 1-21, February.

  2. Tony Lancaster & Sung Jae Jun, 2010. "Bayesian quantile regression methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 287-307.

    Cited by:

    1. Theodore Panagiotidis & Gianluigi Pelloni, 2014. "Asymmetry and Lilien’s Sectoral Shifts Hypothesis: A Quantile Regression Approach," Review of Economic Analysis, Rimini Centre for Economic Analysis, vol. 6(1), pages 68-86, June.
    2. Alhamzawi, Rahim & Yu, Keming, 2013. "Conjugate priors and variable selection for Bayesian quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 209-219.
    3. Wu Wang & Zhongyi Zhu, 2017. "Conditional empirical likelihood for quantile regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 1-16, January.
    4. Korobilis, Dimitris, 2015. "Quantile forecasts of inflation under model uncertainty," MPRA Paper 64341, University Library of Munich, Germany.
    5. Philip Kostov, 2013. "Empirical likelihood estimation of the spatial quantile regression," Journal of Geographical Systems, Springer, vol. 15(1), pages 51-69, January.
    6. Dries Benoit & Rahim Alhamzawi & Keming Yu, 2013. "Bayesian lasso binary quantile regression," Computational Statistics, Springer, vol. 28(6), pages 2861-2873, December.
    7. Lane F. Burgette & Jerome P. Reiter, 2012. "Modeling Adverse Birth Outcomes via Confirmatory Factor Quantile Regression," Biometrics, The International Biometric Society, vol. 68(1), pages 92-100, March.
    8. Bollinger, Christopher R. & van Hasselt, Martijn, 2017. "Bayesian moment-based inference in a regression model with misclassification error," Journal of Econometrics, Elsevier, vol. 200(2), pages 282-294.
    9. Michael Kohler & Adam Krzyżak & Reinhard Tent & Harro Walk, 2018. "Nonparametric quantile estimation using importance sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 439-465, April.
    10. Yunwen Yang & Huixia Judy Wang & Xuming He, 2016. "Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood," International Statistical Review, International Statistical Institute, vol. 84(3), pages 327-344, December.
    11. Korobilis, Dimitris, 2017. "Quantile regression forecasts of inflation under model uncertainty," International Journal of Forecasting, Elsevier, vol. 33(1), pages 11-20.

  3. Jun, Sung Jae & Pinkse, Joris & Wan, Yuanyuan, 2010. "A consistent nonparametric test of affiliation in auction models," Journal of Econometrics, Elsevier, vol. 159(1), pages 46-54, November.

    Cited by:

    1. Hanming Fang & Xun Tang, 2013. "Inference of Bidders' Risk Attitudes in Ascending Auctions with Endogenous Entry," NBER Working Papers 19435, National Bureau of Economic Research, Inc.
    2. Yulia Kotlyarova & Marcia M Schafgans & Victoria Zinde-Walsh, 2011. "Adapting Kernel Estimation to Uncertain Smoothness," STICERD - Econometrics Paper Series 557, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    3. Luciano De Castro, 2010. "Affiliation, Equilibrium Existence and Revenue Ranking of Auctions," Discussion Papers 1530, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    4. Hickman Brent R. & Hubbard Timothy P. & Sağlam Yiğit, 2012. "Structural Econometric Methods in Auctions: A Guide to the Literature," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 67-106, August.
    5. Aradillas-López, Andrés & Gandhi, Amit & Quint, Daniel, 2016. "A simple test for moment inequality models with an application to English auctions," Journal of Econometrics, Elsevier, vol. 194(1), pages 96-115.
    6. Nianqing Liu & Yao Luo, 2014. "A Nonparametric Test of Exogenous Participation in First-Price Auctions," Working Papers tecipa-519, University of Toronto, Department of Economics.
    7. Ma, Jun & Marmer, Vadim & Shneyerov, Artyom, 2016. "Inference for First-Price Auctions with Guerre, Perrigne, and Vuong's estimator," Microeconomics.ca working papers vadim_marmer-2016-4, Vancouver School of Economics, revised 17 Mar 2018.

  4. Jun, Sung Jae & Pinkse, Joris, 2009. "Semiparametric tests of conditional moment restrictions under weak or partial identification," Journal of Econometrics, Elsevier, vol. 152(1), pages 3-18, September.

    Cited by:

    1. Antoine, Bertille & Lavergne, Pascal, 2014. "Conditional moment models under semi-strong identification," Journal of Econometrics, Elsevier, vol. 182(1), pages 59-69.
    2. Manuel Landajo & Celia Bilbao & Amelia Bilbao, 2012. "Nonparametric neural network modeling of hedonic prices in the housing market," Empirical Economics, Springer, vol. 42(3), pages 987-1009, June.
    3. Li, Hongjun & Li, Qi & Liu, Ruixuan, 2016. "Consistent model specification tests based on k-nearest-neighbor estimation method," Journal of Econometrics, Elsevier, vol. 194(1), pages 187-202.

  5. Jun, Sung Jae & Pinkse, Joris, 2009. "Efficient Semiparametric Seemingly Unrelated Quantile Regression Estimation," Econometric Theory, Cambridge University Press, vol. 25(05), pages 1392-1414, October.

    Cited by:

    1. Habert white & Tae-Hwan Kim & Simone Manganelli, 2012. "VAR for VaR: Measuring Tail Dependence Using Multivariate Regression Quantiles," Working papers 2012rwp-45, Yonsei University, Yonsei Economics Research Institute.
    2. Henderson, Daniel J. & Kumbhakar, Subal C. & Li, Qi & Parmeter, Christopher F., 2015. "Smooth coefficient estimation of a seemingly unrelated regression," Journal of Econometrics, Elsevier, vol. 189(1), pages 148-162.
    3. Lee, Dong Jin & Yoon, Jai Hyung, 2016. "The New Keynesian Phillips Curve in multiple quantiles and the asymmetry of monetary policy," Economic Modelling, Elsevier, vol. 55(C), pages 102-114.
    4. Li, Hongjun & Li, Qi & Liu, Ruixuan, 2016. "Consistent model specification tests based on k-nearest-neighbor estimation method," Journal of Econometrics, Elsevier, vol. 194(1), pages 187-202.

  6. Jun, Sung Jae, 2009. "Local structural quantile effects in a model with a nonseparable control variable," Journal of Econometrics, Elsevier, vol. 151(1), pages 82-97, July.

    Cited by:

    1. Jun, Sung Jae & Pinkse, Joris & Xu, Haiqing, 2011. "Tighter bounds in triangular systems," Journal of Econometrics, Elsevier, vol. 161(2), pages 122-128, April.
    2. Victor Chernozhukov & Ivan Fernandez-Val & Whitney K. Newey & Sami Stouli & Francis Vella, 2017. "Semiparametric estimation of structural functions in nonseparable triangular models," CeMMAP working papers CWP48/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Stefan Hoderlein & Hajo Holzmann & Alexander Meister, 2015. "The triangular model with random coefficients," CeMMAP working papers CWP33/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Henderson, Daniel J. & Kumbhakar, Subal C. & Li, Qi & Parmeter, Christopher F., 2015. "Smooth coefficient estimation of a seemingly unrelated regression," Journal of Econometrics, Elsevier, vol. 189(1), pages 148-162.
    5. Victor Chernozhukov & Ivan Fernandez-Val & Amanda Kowalski, 2011. "Quantile Regression with Censoring and Endogeneity," Cowles Foundation Discussion Papers 1797, Cowles Foundation for Research in Economics, Yale University.
    6. Nese Yildiz, 2012. "Estimation of Binary Choice Models with Linear Index and Dummy Endogenous Variables," Koç University-TUSIAD Economic Research Forum Working Papers 1202, Koc University-TUSIAD Economic Research Forum.
    7. Santiago Pereda Fernández, 2016. "Estimation of counterfactual distributions with a continuous endogenous treatment," Temi di discussione (Economic working papers) 1053, Bank of Italy, Economic Research and International Relations Area.

  7. Jun, Sung Jae, 2008. "Weak identification robust tests in an instrumental quantile model," Journal of Econometrics, Elsevier, vol. 144(1), pages 118-138, May.

    Cited by:

    1. Galvao, Antonio F. & Montes-Rojas, Gabriel, 2015. "On the equivalence of instrumental variables estimators for linear models," Economics Letters, Elsevier, vol. 134(C), pages 13-15.
    2. Isaiah Andrews & Anna Mikusheva, 2016. "Conditional Inference With a Functional Nuisance Parameter," Econometrica, Econometric Society, vol. 84, pages 1571-1612, July.
    3. Kaplan, David M. & Sun, Yixiao, 2012. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," University of California at San Diego, Economics Working Paper Series qt888657tp, Department of Economics, UC San Diego.
    4. Christophe Muller, 2017. "Heterogeneity and nonconstant effect in two-stage quantile regression," Post-Print hal-01647474, HAL.
    5. Jun, Sung Jae, 2009. "Local structural quantile effects in a model with a nonseparable control variable," Journal of Econometrics, Elsevier, vol. 151(1), pages 82-97, July.
    6. Tae-Hwan Kim & Christophe Muller, 2015. "A Particular Form of Non-Constant Effect in Two-Stage Quantile Regression," Working papers 2015rwp-82, Yonsei University, Yonsei Economics Research Institute.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Rankings

This author is among the top 5% authors according to these criteria:
  1. Record of graduates

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 1 paper announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (1) 2006-04-22

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Sung Jae Jun should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.