IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

VAR for VaR: Measuring Tail Dependence Using Multivariate Regression Quantiles

Listed author(s):
  • Habert white
  • Tae-Hwan Kim

    (School of Economics, Yonsei University)

  • Simone Manganelli

    (European Central Bank, DG-Research)

This paper proposes methods for estimation and inference in multivariate, multi-quantile models. The theory can simultaneously accommodate models with multiple random variables, multiple confidence levels, and multiple lags of the associated quantiles. The proposed framework can be conveniently thought of as a vector autoregressive (VAR) extension to quantile models. We estimate a simple version of the model using market equity returns data to analyse spillovers in the values at risk (VaR) between a market index and financial institutions. We construct impulse-response functions for the quantiles of a sample of 230 financial institutions around the world and study how financial institution-specific and system-wide shocks are absorbed by the system. We show how our methodology can successfully identify both in-sample and out-of-sample the set of financial institutions whose risk is most sentitive to market wide shocks in situations of financial distress, and can prove a valuable addition to the traditional toolkit of policy makers and supervisors.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://165.132.78.176/repec/yon/wpaper/2012rwp-45.pdf
Download Restriction: no

Paper provided by Yonsei University, Yonsei Economics Research Institute in its series Working papers with number 2012rwp-45.

as
in new window

Length:
Date of creation: Aug 2012
Handle: RePEc:yon:wpaper:2012rwp-45
Contact details of provider: Postal:
50 Yonsei-ro, Seodaemun-gu, Seoul

Phone: 82-2-2123-4065
Fax: 82-2-364-9149
Web page: http://yeri.yonsei.ac.kr/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Komunjer, Ivana, 2005. "Quasi-maximum likelihood estimation for conditional quantiles," Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.
  2. P. Hartmann & S. Straetmans & C. G. de Vries, 2004. "Asset Market Linkages in Crisis Periods," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 313-326, February.
  3. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
  4. Newey, Whitney K. & Powell, James L., 1990. "Efficient Estimation of Linear and Type I Censored Regression Models Under Conditional Quantile Restrictions," Econometric Theory, Cambridge University Press, vol. 6(03), pages 295-317, September.
  5. repec:fip:fedhpr:y:2010:i:may:p:65-71 is not listed on IDEAS
  6. Viral V. Acharya & Lasse H. Pedersen & Thomas Philippon & Matthew Richardson, 2010. "Measuring systemic risk," Working Paper 1002, Federal Reserve Bank of Cleveland.
  7. Victor Chernozhukov & Iván Fernández-Val, 2011. "Inference for Extremal Conditional Quantile Models, with an Application to Market and Birthweight Risks," Review of Economic Studies, Oxford University Press, vol. 78(2), pages 559-589.
  8. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, February.
  9. Galvao Jr., Antonio F., 2011. "Quantile regression for dynamic panel data with fixed effects," Journal of Econometrics, Elsevier, vol. 164(1), pages 142-157, September.
  10. Len Umantsev & Victor Chernozhukov, 2001. "Conditional value-at-risk: Aspects of modeling and estimation," Empirical Economics, Springer, vol. 26(1), pages 271-292.
  11. Manganelli, Simone & White, Halbert & Kim, Tae-Hwan, 2008. "Modeling autoregressive conditional skewness and kurtosis with multi-quantile CAViaR," Working Paper Series 957, European Central Bank.
  12. Jun, Sung Jae & Pinkse, Joris, 2009. "Efficient Semiparametric Seemingly Unrelated Quantile Regression Estimation," Econometric Theory, Cambridge University Press, vol. 25(05), pages 1392-1414, October.
  13. Brunnermeier, Markus K. & Oehmke, Martin, 2013. "Bubbles, Financial Crises, and Systemic Risk," Handbook of the Economics of Finance, Elsevier.
  14. Dimitrios Bisias & Mark Flood & Andrew W. Lo & Stavros Valavanis, 2012. "A Survey of Systemic Risk Analytics," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 255-296, October.
  15. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
  16. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, 05.
  17. Xiao, Zhijie, 2009. "Quantile cointegrating regression," Journal of Econometrics, Elsevier, vol. 150(2), pages 248-260, June.
  18. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, February.
  19. Roger Koenker & Zhijie Xiao, 2004. "Unit Root Quantile Autoregression Inference," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 775-787, January.
  20. repec:cep:stiecm:/2014/574 is not listed on IDEAS
  21. Stinchcombe, Maxwell B. & White, Halbert, 1998. "Consistent Specification Testing With Nuisance Parameters Present Only Under The Alternative," Econometric Theory, Cambridge University Press, vol. 14(03), pages 295-325, June.
  22. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
  23. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1993. "Nonlinear Dynamic Structures," Econometrica, Econometric Society, vol. 61(4), pages 871-907, July.
  24. Karun Adusumilli & Taisuke Otsu, 2014. "Empirical likelihood for random sets," LSE Research Online Documents on Economics 58064, London School of Economics and Political Science, LSE Library.
  25. repec:spo:wpecon:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
  26. Potter, Simon M., 2000. "Nonlinear impulse response functions," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1425-1446, September.
  27. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
  28. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
  29. Weiss, Andrew A., 1991. "Estimating Nonlinear Dynamic Models Using Least Absolute Error Estimation," Econometric Theory, Cambridge University Press, vol. 7(01), pages 46-68, March.
  30. Komunjer, Ivana & Vuong, Quang, 2006. "Efficientt Conditional Quantile Estimation: The Time Series Case," University of California at San Diego, Economics Working Paper Series qt78842570, Department of Economics, UC San Diego.
  31. Lamarche, Carlos, 2010. "Robust penalized quantile regression estimation for panel data," Journal of Econometrics, Elsevier, vol. 157(2), pages 396-408, August.
  32. Andrews, Donald W.K., 1988. "Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables," Econometric Theory, Cambridge University Press, vol. 4(03), pages 458-467, December.
  33. White, Halbert, 2006. "Approximate Nonlinear Forecasting Methods," Handbook of Economic Forecasting, Elsevier.
  34. Viral V. Acharya, 2010. "Measuring systemic risk," Proceedings 1140, Federal Reserve Bank of Chicago.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:yon:wpaper:2012rwp-45. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (YERI)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.