IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Efficientt Conditional Quantile Estimation: The Time Series Case

  • Komunjer, Ivana
  • Vuong, Quang

In this paper we consider the problem of efficient estimation in conditional quantile models with time series data. Our first result is to derive the semiparametric efficiency bound in time series models of conditional quantiles; this is a nontrivial extension of a large body of work on efficient estimation, which has traditionally focused on models with independent and identically distributed data. In particular, we generalize the bound derived by New and Powell (1990) to the case where the data is weakly dependent and heterogeneous. We then proceed by constructing an M-estimator which achieves the semiparametric efficiency bound. Our efficient M-estimator is obtained by minimizing an objective function which depends on a nonparametric estimator of the conditional distribution of the variable of interest rather than its density.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.escholarship.org/uc/item/78842570.pdf;origin=repeccitec
Download Restriction: no

Paper provided by Department of Economics, UC San Diego in its series University of California at San Diego, Economics Working Paper Series with number qt78842570.

as
in new window

Length:
Date of creation: 01 Oct 2006
Date of revision:
Handle: RePEc:cdl:ucsdec:qt78842570
Contact details of provider: Postal: 9500 Gilman Drive, La Jolla, CA 92093-0508
Phone: (858) 534-3383
Fax: (858) 534-7040
Web page: http://www.escholarship.org/repec/ucsdecon/

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cdl:ucsdec:qt78842570. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.