IDEAS home Printed from https://ideas.repec.org/p/tiu/tiucen/05757b2b-ad74-4583-b012-b417132f7675.html
   My bibliography  Save this paper

Semiparametrically Efficient Inference Based on Signs and Ranks for Median Restricted Models

Author

Listed:
  • Hallin, M.
  • Vermandele, C.
  • Werker, B.J.M.

    (Tilburg University, Center For Economic Research)

Abstract

Since the pioneering work of Koenker and Bassett (1978), econometric models involving median and quantile rather than the classical mean or conditional mean concepts have attracted much interest.Contrary to the traditional models where the noise is assumed to have mean zero, median-restricted models enjoy a rich group-invariance structure.In this paper, we exploit this invariance structure in order to obtain semiparametrically efficient inference procedures for these models.These procedures are based on residual signs and ranks, and therefore insensitive to possible misspecification of the underlying innovation density, yet semiparametrically efficient at correctly specified densities.This latter combination is a definite advantage of these procedures over classical quasi-likelihood methods.The techniques we propose can be applied, without additional technical difficulties, to both cross-sectional and time-series models.They do not require any explicit tangent space calculation nor any projections on these.

Suggested Citation

  • Hallin, M. & Vermandele, C. & Werker, B.J.M., 2004. "Semiparametrically Efficient Inference Based on Signs and Ranks for Median Restricted Models," Discussion Paper 2004-11, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:05757b2b-ad74-4583-b012-b417132f7675
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/600353/11.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marc Hallin & Madan Lal Puri, 1994. "Aligned rank tests for linear models with autocorrelated errors," ULB Institutional Repository 2013/2045, ULB -- Universite Libre de Bruxelles.
    2. Komunjer, Ivana, 2005. "Quasi-maximum likelihood estimation for conditional quantiles," Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.
    3. Swensen, Anders Rygh, 1985. "The asymptotic distribution of the likelihood ratio for autoregressive time series with a regression trend," Journal of Multivariate Analysis, Elsevier, vol. 16(1), pages 54-70, February.
    4. Marc Hallin & Bas Werker, 2003. "Semiparametric efficiency, distribution-freeness, and invariance," ULB Institutional Repository 2013/2119, ULB -- Universite Libre de Bruxelles.
    5. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
    6. Hallin, M. & Vermandele, C. & Werker, B.J.M., 2003. "Serial and Nonserial Sign-and-Rank Statistics : Asymptotic Representation and Asymptotic Normality," Discussion Paper 2003-23, Tilburg University, Center for Economic Research.
    7. Drost, F.C. & Klaassen, C.A.J. & Werker, B.J.M., 1994. "Adaptive estimation in time-series models," Discussion Paper 1994-88, Tilburg University, Center for Economic Research.
    8. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    9. Zhou, Yong & Liang, Hua, 2000. "Asymptotic Normality for L1 Norm Kernel Estimator of Conditional Median under [alpha]-Mixing Dependence," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 136-154, April.
    10. Jeganathan, P., 1995. "Some Aspects of Asymptotic Theory with Applications to Time Series Models," Econometric Theory, Cambridge University Press, vol. 11(5), pages 818-887, October.
    11. Komunjer, Ivana & Vuong, Quang, 2006. "Efficientt Conditional Quantile Estimation: The Time Series Case," University of California at San Diego, Economics Working Paper Series qt78842570, Department of Economics, UC San Diego.
    12. Hallin, M. & Puri, M. L., 1994. "Aligned Rank Tests for Linear Models with Autocorrelated Error Terms," Journal of Multivariate Analysis, Elsevier, vol. 50(2), pages 175-237, August.
    13. Sherman, Robert P, 1993. "The Limiting Distribution of the Maximum Rank Correlation Estimator," Econometrica, Econometric Society, vol. 61(1), pages 123-137, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hallin, M. & Vermandele, C. & Werker, B.J.M., 2003. "Serial and Nonserial Sign-and-Rank Statistics : Asymptotic Representation and Asymptotic Normality," Discussion Paper 2003-23, Tilburg University, Center for Economic Research.
    2. Chen, Min & Zhu, Ke, 2014. "Sign-based specification tests for martingale difference with conditional heteroscedasity," MPRA Paper 56347, University Library of Munich, Germany.

    More about this item

    Keywords

    models; regression analysis; econometrics;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:05757b2b-ad74-4583-b012-b417132f7675. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Richard Broekman). General contact details of provider: http://center.uvt.nl .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.