IDEAS home Printed from https://ideas.repec.org/p/cre/crefwp/146.html
   My bibliography  Save this paper

Semiparametric Efficient Estimation of the Mean of a Time Series in the Presence of Conditional Heterogeneity of Unknown Form

Author

Abstract

We obtain semiparametric efficiency bounds for the estimation of a location parameter in a time series model where the innovations are stationary and ergodic, conditionally symmetric martingale differences but otherwise possess general dependence and distributions of unknown form. We then describe an iterative estimator that achieves this bound when the conditional density functions of the sample are known. Finally, we develop a 'semi-adaptive' estimator that achieves the bound when these densities are unknown by the investigator. This estimator employs nonparametric kernel estimates of the densities. Monte Carlo results are reported. Nous dérivons une borne d'efficacité semi-paramétrique pour un estimateur de la moyenne d'une série temporelle dans un contexte où les innovations sont stationnaires et ergodiques. Nous supposons que les innovations suivent de façon conditionelle une différence de martingale symétrique tout en permettant une forme générale de dépendence temporelle et un loi de forme inconnue. Un estimateur «semi-adaptif» atteignant cette borne est proposé dans le cas où le fonction de densité est inconnue. Cet estimateur utilise une estimation non-paramétrique à noyau de la fonction de densité. Enfin, une étude de Monte-Carlo est présentée.

Suggested Citation

  • Douglas Hodgson, 2002. "Semiparametric Efficient Estimation of the Mean of a Time Series in the Presence of Conditional Heterogeneity of Unknown Form," Cahiers de recherche CREFE / CREFE Working Papers 146, CREFE, Université du Québec à Montréal.
  • Handle: RePEc:cre:crefwp:146
    as

    Download full text from publisher

    File URL: http://www.unites.uqam.ca/eco/CREFE/cahiers/cah146.ps
    File Function: Main text
    Download Restriction: no

    File URL: http://www.unites.uqam.ca/eco/CREFE/cahiers/cah146.pdf
    File Function: Main text
    Download Restriction: no

    References listed on IDEAS

    as
    1. Drost, F.C. & Klaassen, C.A.J. & Werker, B.J.M., 1994. "Adaptive estimation in time-series models," Discussion Paper 1994-88, Tilburg University, Center for Economic Research.
    2. Kuersteiner, Guido M., 2002. "Efficient Iv Estimation For Autoregressive Models With Conditional Heteroskedasticity," Econometric Theory, Cambridge University Press, vol. 18(03), pages 547-583, June.
    3. Hodgson, Douglas J., 1998. "Adaptive Estimation Of Error Correction Models," Econometric Theory, Cambridge University Press, vol. 14(01), pages 44-69, February.
    4. Gallant, Ronald & Tauchen, George, 1989. "Seminonparametric Estimation of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Econometrica, Econometric Society, vol. 57(5), pages 1091-1120, September.
    5. repec:cup:etheor:v:11:y:1995:i:5:p:818-87 is not listed on IDEAS
    6. Drost, Feike C. & Klaassen, Chris A. J., 1997. "Efficient estimation in semiparametric GARCH models," Journal of Econometrics, Elsevier, vol. 81(1), pages 193-221, November.
    7. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
    8. Hodgson, Douglas J., 1998. "Adaptive estimation of cointegrating regressions with ARMA errors," Journal of Econometrics, Elsevier, vol. 85(2), pages 231-267, August.
    9. Hodgson, Douglas J, 1999. "Adaptive Estimation of Cointegrated Models: Simulation Evidence and an Application to the Forward Exchange Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(6), pages 627-650, Nov.-Dec..
    10. Linton, Oliver, 1993. "Adaptive Estimation in ARCH Models," Econometric Theory, Cambridge University Press, vol. 9(04), pages 539-569, August.
    11. Steigerwald, Douglas G., 1992. "Adaptive estimation in time series regression models," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 251-275.
    12. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
    13. Jeganathan, P., 1995. "Some Aspects of Asymptotic Theory with Applications to Time Series Models," Econometric Theory, Cambridge University Press, vol. 11(05), pages 818-887, October.
    14. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-359, October.
    15. repec:cup:etheor:v:9:y:1993:i:4:p:539-69 is not listed on IDEAS
    16. Douglas Hodgson, 2000. "Unconditional pseudo-maximum likelihood and adaptive estimation in the presence of conditional heterogeneity of unknown form," Econometric Reviews, Taylor & Francis Journals, vol. 19(2), pages 175-206.
    17. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    18. White, Halbert & Domowitz, Ian, 1984. "Nonlinear Regression with Dependent Observations," Econometrica, Econometric Society, vol. 52(1), pages 143-161, January.
    19. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Time series; semiparametric efficiency; conditional heteroskedasticity; adaptive estimation.;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cre:crefwp:146. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Stéphane Pallage). General contact details of provider: http://edirc.repec.org/data/crefeca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.