IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/2022-06.html
   My bibliography  Save this paper

Local Asymptotic Normality of General Conditionally Heteroskedastic and Score-Driven Time-Series Models

Author

Listed:
  • Christian Francq

    (CREST and University of Lille, France)

  • Jean-Michel Zakoïan

    (University of Lille and CREST, France)

Abstract

The paper establishes the Local Asymptotic Normality (LAN) property for general conditionally heteroskedastic time series models of multiplicative form, ϵt = σt(θ0)ηt, where the volatility σt(θ0) is a parametric function of {ϵs, s

Suggested Citation

  • Christian Francq & Jean-Michel Zakoïan, 2022. "Local Asymptotic Normality of General Conditionally Heteroskedastic and Score-Driven Time-Series Models," Working Papers 2022-06, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2022-06
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/2022-06.pdf
    File Function: CREST working paper version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Drost, F.C. & Klaassen, C.A.J. & Werker, B.J.M., 1994. "Adaptive estimation in time-series models," Discussion Paper 1994-88, Tilburg University, Center for Economic Research.
    2. Swensen, Anders Rygh, 1985. "The asymptotic distribution of the likelihood ratio for autoregressive time series with a regression trend," Journal of Multivariate Analysis, Elsevier, vol. 16(1), pages 54-70, February.
    3. Marc Hallin & Masanobu Taniguchi & Abdeslam Serroukh & Kokyo Choy, 1999. "Local asymptotic normality for regression models with long-memory disturbance, with statistical applications," ULB Institutional Repository 2013/2091, ULB -- Universite Libre de Bruxelles.
    4. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, September.
    5. Drost, Feike C. & Klaassen, Chris A. J., 1997. "Efficient estimation in semiparametric GARCH models," Journal of Econometrics, Elsevier, vol. 81(1), pages 193-221, November.
    6. Drew Creal & Siem Jan Koopman & André Lucas, 2008. "A General Framework for Observation Driven Time-Varying Parameter Models," Tinbergen Institute Discussion Papers 08-108/4, Tinbergen Institute.
    7. Bernard Garel & Marc Hallin, 1995. "Local asymptotic normality of multivariate ARMA processes with a linear trend," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(3), pages 551-579, September.
    8. Zhu, Dongming & Galbraith, John W., 2010. "A generalized asymmetric Student-t distribution with application to financial econometrics," Journal of Econometrics, Elsevier, vol. 157(2), pages 297-305, August.
    9. Royer, Julien, 2021. "Conditional asymmetry in Power ARCH($\infty$) models," MPRA Paper 109118, University Library of Munich, Germany.
    10. Linton, Oliver, 1993. "Adaptive Estimation in ARCH Models," Econometric Theory, Cambridge University Press, vol. 9(4), pages 539-569, August.
    11. Jeganathan, P., 1995. "Some Aspects of Asymptotic Theory with Applications to Time Series Models," Econometric Theory, Cambridge University Press, vol. 11(5), pages 818-887, October.
    12. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francq, Christian & Zakoian, Jean-Michel, 2024. "Finite moments testing in a general class of nonlinear time series models," MPRA Paper 121193, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francq, Christian & Zakoian, Jean-Michel, 2024. "Finite moments testing in a general class of nonlinear time series models," MPRA Paper 121193, University Library of Munich, Germany.
    2. Andreou, E. & Werker, B.J.M., 2004. "An Alternative Asymptotic Analysis of Residual-Based Statistics," Other publications TiSEM 93fe16c1-9f21-4dab-9b73-4, Tilburg University, School of Economics and Management.
    3. Shiqing Ling & Michael McAleer, 2001. "On Adaptive Estimation in Nonstationary ARMA Models with GARCH Errors," ISER Discussion Paper 0548, Institute of Social and Economic Research, Osaka University.
    4. Andreou, E. & Werker, B.J.M., 2003. "A Simple Asymptotic Analysis of Residual-Based Statistics," Discussion Paper 2003-118, Tilburg University, Center for Economic Research.
    5. Ciccarelli Nicola, 2018. "Semiparametric efficient adaptive estimation of the GJR-GARCH model," Statistics & Risk Modeling, De Gruyter, vol. 35(3-4), pages 141-160, July.
    6. Andreou, E. & Werker, B.J.M., 2003. "A Simple Asymptotic Analysis of Residual-Based Statistics," Other publications TiSEM 9fe68e51-a026-4660-b6e7-8, Tilburg University, School of Economics and Management.
    7. Douglas Hodgson, 2002. "Semiparametric Efficient Estimation of the Mean of a Time Series in the Presence of Conditional Heterogeneity of Unknown Form," Cahiers de recherche CREFE / CREFE Working Papers 146, CREFE, Université du Québec à Montréal.
    8. W. K. Li & Shiqing Ling & Michael McAleer, 2001. "A Survey of Recent Theoretical Results for Time Series Models with GARCH Errors," ISER Discussion Paper 0545, Institute of Social and Economic Research, Osaka University.
    9. Francq, Christian & Zakoian, Jean-Michel, 2021. "Testing the existence of moments and estimating the tail index of augmented garch processes," MPRA Paper 110511, University Library of Munich, Germany.
    10. Andreou, E. & Werker, B.J.M., 2004. "An Alternative Asymptotic Analysis of Residual-Based Statistics," Discussion Paper 2004-56, Tilburg University, Center for Economic Research.
    11. Elena Andreou & Bas J.M. Werker, 2014. "Residual-based Rank Specification Tests for AR-GARCH type models," University of Cyprus Working Papers in Economics 02-2014, University of Cyprus Department of Economics.
    12. Drost, F.C. & Klaasens, C.A.J. & Werker, B.J.M., 1994. "Adaptive Estimation in Time Series Models," Papers 9488, Tilburg - Center for Economic Research.
    13. Oliver Linton & Douglas Steigerwald, 2000. "Adaptive testing in arch models," Econometric Reviews, Taylor & Francis Journals, vol. 19(2), pages 145-174.
    14. Gabriele Fiorentini & Enrique Sentana, 2021. "Specification tests for non‐Gaussian maximum likelihood estimators," Quantitative Economics, Econometric Society, vol. 12(3), pages 683-742, July.
    15. Gonzalez-Rivera, Gloria & Drost, Feike C., 1999. "Efficiency comparisons of maximum-likelihood-based estimators in GARCH models," Journal of Econometrics, Elsevier, vol. 93(1), pages 93-111, November.
    16. Fiorentini, Gabriele & Sentana, Enrique, 2021. "New testing approaches for mean–variance predictability," Journal of Econometrics, Elsevier, vol. 222(1), pages 516-538.
    17. Drost, Feike C & Werker, Bas J M, 2004. "Semiparametric Duration Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 40-50, January.
    18. Marc Hallin & Catherine Vermandele & Bas J. M. Werker, 2008. "Semiparametrically efficient inference based on signs and ranks for median‐restricted models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 389-412, April.
    19. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    20. repec:rim:rimwps:38-07 is not listed on IDEAS
    21. Anders Bredahl Kock & David Preinerstorfer, 2019. "Power in High‐Dimensional Testing Problems," Econometrica, Econometric Society, vol. 87(3), pages 1055-1069, May.

    More about this item

    Keywords

    APARCH; Asymmetric Student-t distribution; Beta-t-GARCH; Conditional heteroskedasticity; LAN in time series; Quadratic mean differentiability;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2022-06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.