IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

A General Framework for Observation Driven Time-Varying Parameter Models

  • Drew Creal
  • Siem Jan Koopman
  • Andre Lucas

We propose a new class of observation driven time series models that we refer to as Generalized Autoregressive Score (GAS) models. The driving mechanism of the GAS model is the scaled likelihood score. This provides a unified and consistent framework for introducing time-varying parameters in a wide class of non-linear models. The GAS model encompasses other well-known models such as the generalized autoregressive conditional heteroskedasticity, autoregressive conditional duration, autoregressive conditional intensity and single source of error models. In addition, the GAS specification gives rise to a wide range of new observation driven models. Examples include non-linear regression models with time-varying parameters, observation driven analogues of unobserved components time series models, multivariate point process models with time-varying parameters and pooling restrictions, new models for time-varying copula functions and models for time-varying higher order moments. We study the properties of GAS models and provide several non-trivial examples of their application.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://gcoe.ier.hit-u.ac.jp/research/discussion/2008/pdf/gd08-038.pdf
Download Restriction: no

Paper provided by Institute of Economic Research, Hitotsubashi University in its series Global COE Hi-Stat Discussion Paper Series with number gd08-038.

as
in new window

Length:
Date of creation: Mar 2009
Date of revision:
Handle: RePEc:hst:ghsdps:gd08-038
Contact details of provider: Postal:
2-1 Naka, Kunitachi City, Tokyo 186

Phone: +81-42-580-8327
Fax: +81-42-580-8333
Web page: http://www.ier.hit-u.ac.jp/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Russell, Jeffrey R. & Engle, Robert F., 2005. "A Discrete-State Continuous-Time Model of Financial Transactions Prices and Times: The Autoregressive Conditional Multinomial-Autoregressive Conditional Duration Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 166-180, April.
  2. James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
  3. Alexandra Dias & Paul Embrechts, 2004. "Dynamic copula models for multivariate high-frequency data in finance," Working Papers wpn04-01, Warwick Business School, Finance Group.
  4. Robert F. Engle & Giampiero M. Gallo, 2003. "A Multiple Indicators Model For Volatility Using Intra-Daily Data," Econometrics Working Papers Archive wp2003_07, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  5. Watson, Mark W., 1986. "Univariate detrending methods with stochastic trends," Journal of Monetary Economics, Elsevier, vol. 18(1), pages 49-75, July.
  6. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-89, October.
  7. Tina Hviid Rydberg & Neil Shephard, 2002. "Dynamics of trade-by-trade price movements: decomposition and models," Economics Papers 2002-W1, Economics Group, Nuffield College, University of Oxford.
  8. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  9. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
  10. Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
  11. Hansen, B.E., 1992. "Autoregressive Conditional Density Estimation," RCER Working Papers 322, University of Rochester - Center for Economic Research (RCER).
  12. BAUWENS, Luc & HAUTSCH, Nikolaus, . "Stochastic conditional intensity processes," CORE Discussion Papers RP 1937, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  13. Neil Shephard, 1995. "Generalized linear autoregressions," Economics Papers 8., Economics Group, Nuffield College, University of Oxford.
  14. Clark, Peter K., 1989. "Trend reversion in real output and unemployment," Journal of Econometrics, Elsevier, vol. 40(1), pages 15-32, January.
  15. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2006. "Vector Multiplicative Error Models: Representation and Inference," NBER Working Papers 12690, National Bureau of Economic Research, Inc.
  16. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-47, August.
  17. Harvey, A C & Jaeger, A, 1993. "Detrending, Stylized Facts and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(3), pages 231-47, July-Sept.
  18. Fiorentini, Gabriele & Calzolari, Giorgio & Panattoni, Lorenzo, 1996. "Analytic Derivatives and the Computation of GARCH Estimates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(4), pages 399-417, July-Aug..
  19. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
  20. Richard A. Davis, 2003. "Observation-driven models for Poisson counts," Biometrika, Biometrika Trust, vol. 90(4), pages 777-790, December.
  21. Francis X. Diebold & Canlin Li, 2002. "Forecasting the Term Structure of Government Bond Yields," Center for Financial Institutions Working Papers 02-34, Wharton School Center for Financial Institutions, University of Pennsylvania.
  22. Francis X. Diebold & Glenn D. Rudebusch & S. Boragan Aruoba, 2004. "The Macroeconomy and the Yield Curve: A Dynamic Latent Factor Approach," NBER Working Papers 10616, National Bureau of Economic Research, Inc.
  23. Andrew Patton, 2004. "Modelling Asymmetric Exchange Rate Dependence," Working Papers wp04-04, Warwick Business School, Finance Group.
  24. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  25. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(04), pages 465-487, December.
  26. Shephard, Neil (ed.), 2005. "Stochastic Volatility: Selected Readings," OUP Catalogue, Oxford University Press, number 9780199257201.
  27. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
  28. van den Goorbergh, Rob W.J. & Genest, Christian & Werker, Bas J.M., 2005. "Bivariate option pricing using dynamic copula models," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 101-114, August.
  29. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-50, July.
  30. Harvey, Andrew & Ruiz, Esther & Sentana, Enrique, 1992. "Unobserved component time series models with Arch disturbances," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 129-157.
  31. Jondeau, Eric & Rockinger, Michael, 2003. "Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1699-1737, August.
  32. Chris Brooks & Simon P. Burke & Gita Persand, 2002. "Augoregressive Conditional Kurtosis," ICMA Centre Discussion Papers in Finance icma-dp2002-05, Henley Business School, Reading University.
  33. Siem Jan Koopman & André Lucas & Bernd Schwaab, 2008. "Forecasting Cross-Sections of Frailty-Correlated Default," Tinbergen Institute Discussion Papers 08-029/4, Tinbergen Institute.
  34. Koopman, Siem Jan & Lucas, Andre & Monteiro, Andre, 2008. "The multi-state latent factor intensity model for credit rating transitions," Journal of Econometrics, Elsevier, vol. 142(1), pages 399-424, January.
  35. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hst:ghsdps:gd08-038. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tatsuji Makino)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.