IDEAS home Printed from https://ideas.repec.org/p/ucy/cypeua/02-2014.html
   My bibliography  Save this paper

Residual-based Rank Specification Tests for AR-GARCH type models

Author

Listed:
  • Elena Andreou
  • Bas J.M. Werker

Abstract

This paper derives the asymptotic distribution for a number of rank-based and classical residual specification tests in AR-GARCH type models. We consider tests for the null hypotheses of no linear and quadratic serial residual autocorrelation, residual symmetry, and no structural breaks. For these tests we show that, generally, no size correction is needed in the asymptotic test distribution when applied to AR-GARCH type residuals obtained through QMLE estimation. To be precise, we give exact expressions for the limiting null distribution of the test statistics applied to residuals, and find that standard critical values often lead to conservative tests. For this result, we give simple sufficient conditions. Simulations show that our asymptotic approximations work well for a large number of AR-GARCH models and parameter values. We also show that the rank-based tests often, though not always, have superior power properties over the classical tests, even if they are conservative. We thereby provide a useful extension to the econometrician's toolkit. An empirical application illustrates the relevance of these tests to the AR-GARCH models for the weekly stock market return indices of some major and emerging countries.

Suggested Citation

  • Elena Andreou & Bas J.M. Werker, 2014. "Residual-based Rank Specification Tests for AR-GARCH type models," University of Cyprus Working Papers in Economics 02-2014, University of Cyprus Department of Economics.
  • Handle: RePEc:ucy:cypeua:02-2014
    as

    Download full text from publisher

    File URL: https://papers.econ.ucy.ac.cy/RePEc/papers/02-14.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elena Andreou & Bas J. M. Werker, 2012. "An Alternative Asymptotic Analysis of Residual-Based Statistics," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 88-99, February.
    2. Lumsdaine, Robin L. & Ng, Serena, 1999. "Testing for ARCH in the presence of a possibly misspecified conditional mean," Journal of Econometrics, Elsevier, vol. 93(2), pages 257-279, December.
    3. Shiqing Ling & Michael McAleer, 2001. "On Adaptive Estimation in Nonstationary ARMA Models with GARCH Errors," ISER Discussion Paper 0548, Institute of Social and Economic Research, Osaka University.
    4. Linton, Oliver, 1993. "Adaptive Estimation in ARCH Models," Econometric Theory, Cambridge University Press, vol. 9(4), pages 539-569, August.
    5. Drost, Feike C & Werker, Bas J M, 2004. "Semiparametric Duration Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 40-50, January.
    6. Hallin, M. & Vermandele, C. & Werker, B.J.M., 2003. "Serial and Nonserial Sign-and-Rank Statistics : Asymptotic Representation and Asymptotic Normality," Discussion Paper 2003-23, Tilburg University, Center for Economic Research.
    7. Lambert, Philippe & Laurent, Sébastien & Veredas, David, 2012. "Testing conditional asymmetry: A residual-based approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1229-1247.
    8. Drost, F.C. & Klaassen, C.A.J. & Werker, B.J.M., 1994. "Adaptive estimation in time-series models," Discussion Paper 1994-88, Tilburg University, Center for Economic Research.
    9. Ploberger, Werner & Phillips, Peter C.B., 2012. "Optimal estimation under nonstandard conditions," Journal of Econometrics, Elsevier, vol. 169(2), pages 258-265.
    10. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    11. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.
    12. Marc Hallin & Catherine Vermandele & Bas Werker, 2006. "Linear serial and nonserial sign-and-rank statistics: asymptotic representation and asymptotic normality," ULB Institutional Repository 2013/5422, ULB -- Universite Libre de Bruxelles.
    13. Marc Hallin & Bas Werker, 1998. "Optimal testing for semiparametric autoregressive models: from Gaussian Lagrange multipliers to regression rank scores and adaptive tests," ULB Institutional Repository 2013/2219, ULB -- Universite Libre de Bruxelles.
    14. Sherman, Robert P, 1993. "The Limiting Distribution of the Maximum Rank Correlation Estimator," Econometrica, Econometric Society, vol. 61(1), pages 123-137, January.
    15. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    16. Wright, Jonathan H, 2000. "Alternative Variance-Ratio Tests Using Ranks and Signs," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 1-9, January.
    17. Bai, Jushan & Ng, Serena, 2001. "A consistent test for conditional symmetry in time series models," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 225-258, July.
    18. Y. K. Tse, 2002. "Residual-based diagnostics for conditional heteroscedasticity models," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 358-374, June.
    19. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-596, May.
    20. Honore, Bo E & Hu, Luojia, 2004. "On the Performance of Some Robust Instrumental Variables Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 30-39, January.
    21. Kreiss Jens-Peter, 1987. "On Adaptive Estimation In Autoregressive Models When There Are Nuisance Functions," Statistics & Risk Modeling, De Gruyter, vol. 5(1-2), pages 59-76, February.
    22. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    23. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    24. Jeganathan, P., 1995. "Some Aspects of Asymptotic Theory with Applications to Time Series Models," Econometric Theory, Cambridge University Press, vol. 11(5), pages 818-887, October.
    25. Halunga, Andreea G. & Orme, Chris D., 2009. "First-Order Asymptotic Theory For Parametric Misspecification Tests Of Garch Models," Econometric Theory, Cambridge University Press, vol. 25(2), pages 364-410, April.
    26. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(3), pages 318-334, September.
    27. Drost, Feike C. & Klaassen, Chris A. J., 1997. "Efficient estimation in semiparametric GARCH models," Journal of Econometrics, Elsevier, vol. 81(1), pages 193-221, November.
    28. Berkes, István & Horváth, Lajos & Kokoszka, Piotr, 2003. "Asymptotics For Garch Squared Residual Correlations," Econometric Theory, Cambridge University Press, vol. 19(4), pages 515-540, August.
    29. W. K. Li & T. K. Mak, 1994. "On The Squared Residual Autocorrelations In Non‐Linear Time Series With Conditional Heteroskedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(6), pages 627-636, November.
    30. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    31. Abadir, Karim M. & Distaso, Walter, 2007. "Testing joint hypotheses when one of the alternatives is one-sided," Journal of Econometrics, Elsevier, vol. 140(2), pages 695-718, October.
    32. Marc Hallin & Bas Werker, 2003. "Semiparametric efficiency, distribution-freeness, and invariance," ULB Institutional Repository 2013/2119, ULB -- Universite Libre de Bruxelles.
    33. Ploberger, Werner, 2004. "A complete class of tests when the likelihood is locally asymptotically quadratic," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 67-94.
    34. Horváth, Lajos & Kokoszka, Piotr, 2001. "LARGE SAMPLE DISTRIBUTION OF WEIGHTED SUMS OF ARCH(p) SQUARED RESIDUAL CORRELATIONS," Econometric Theory, Cambridge University Press, vol. 17(2), pages 283-295, April.
    35. Sun, Yiguo & Stengos, Thanasis, 2006. "Semiparametric efficient adaptive estimation of asymmetric GARCH models," Journal of Econometrics, Elsevier, vol. 133(1), pages 373-386, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Werker, Bas J M & Andreou, Elena, 2013. "Residual-based Rank Specification Tests for AR-GARCH type models," CEPR Discussion Papers 9583, C.E.P.R. Discussion Papers.
    2. Andreou, Elena & Werker, Bas J.M., 2015. "Residual-based rank specification tests for AR–GARCH type models," Journal of Econometrics, Elsevier, vol. 185(2), pages 305-331.
    3. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    4. W. K. Li & Shiqing Ling & Michael McAleer, 2001. "A Survey of Recent Theoretical Results for Time Series Models with GARCH Errors," ISER Discussion Paper 0545, Institute of Social and Economic Research, Osaka University.
    5. Andreou, E. & Werker, B.J.M., 2004. "An Alternative Asymptotic Analysis of Residual-Based Statistics," Other publications TiSEM 93fe16c1-9f21-4dab-9b73-4, Tilburg University, School of Economics and Management.
    6. Andreou, E. & Werker, B.J.M., 2003. "A Simple Asymptotic Analysis of Residual-Based Statistics," Discussion Paper 2003-118, Tilburg University, Center for Economic Research.
    7. Andreou, E. & Werker, B.J.M., 2003. "A Simple Asymptotic Analysis of Residual-Based Statistics," Other publications TiSEM 9fe68e51-a026-4660-b6e7-8, Tilburg University, School of Economics and Management.
    8. Andreou, E. & Werker, B.J.M., 2004. "An Alternative Asymptotic Analysis of Residual-Based Statistics," Discussion Paper 2004-56, Tilburg University, Center for Economic Research.
    9. Yi-Ting Chen, 2008. "A unified approach to standardized-residuals-based correlation tests for GARCH-type models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 111-133.
    10. Maria Pacurar, 2008. "Autoregressive Conditional Duration Models In Finance: A Survey Of The Theoretical And Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 22(4), pages 711-751, September.
    11. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    12. Shiqing Ling & Michael McAleer, 2001. "On Adaptive Estimation in Nonstationary ARMA Models with GARCH Errors," ISER Discussion Paper 0548, Institute of Social and Economic Research, Osaka University.
    13. Drost, Feike C. & Klaassen, Chris A. J., 1997. "Efficient estimation in semiparametric GARCH models," Journal of Econometrics, Elsevier, vol. 81(1), pages 193-221, November.
    14. Hallin, Marc & La Vecchia, Davide, 2017. "R-estimation in semiparametric dynamic location-scale models," Journal of Econometrics, Elsevier, vol. 196(2), pages 233-247.
    15. Hallin, Marc & La Vecchia, Davide, 2020. "A Simple R-estimation method for semiparametric duration models," Journal of Econometrics, Elsevier, vol. 218(2), pages 736-749.
    16. Drost, F.C. & Klaasens, C.A.J. & Werker, B.J.M., 1994. "Adaptive Estimation in Time Series Models," Papers 9488, Tilburg - Center for Economic Research.
    17. Linton, Oliver & Mammen, Enno, 2003. "Estimating semiparametric ARCH (8) models by kernel smoothing methods," LSE Research Online Documents on Economics 2187, London School of Economics and Political Science, LSE Library.
    18. Gonzalez-Rivera, Gloria & Drost, Feike C., 1999. "Efficiency comparisons of maximum-likelihood-based estimators in GARCH models," Journal of Econometrics, Elsevier, vol. 93(1), pages 93-111, November.
    19. Sun, Yiguo & Stengos, Thanasis, 2006. "Semiparametric efficient adaptive estimation of asymmetric GARCH models," Journal of Econometrics, Elsevier, vol. 133(1), pages 373-386, July.
    20. Wasel Shadat, 2011. "On the Nonparametric Tests of Univariate GARCH Regression Models," Economics Discussion Paper Series 1115, Economics, The University of Manchester.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucy:cypeua:02-2014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.ucy.ac.cy/econ/?lang=en .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.