IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Residual-based Rank Specification Tests for AR-GARCH type models

  • Andreou, Elena
  • Werker, Bas J M
Registered author(s):

    This paper derives the asymptotic distribution for a number of rank-based and classical residual specification tests in AR-GARCH type models. We consider tests for the null hypotheses of no linear and quadratic serial residual autocorrelation, residual symmetry, and no structural breaks. For these tests we show that, generally, no size correction is needed in the asymptotic test distribution when applied to AR-GARCH type residuals obtained through QMLE estimation. To be precise, we give exact expressions for the limiting null distribution of the test statistics applied to residuals, and find that standard critical values often lead to conservative tests. For this result, we give simple sufficient conditions. Simulations show that our asymptotic approximations work well for a large number of AR-GARCH models and parameter values. We also show that the rank-based tests often, though not always, have superior power properties over the classical tests, even if they are conservative. We thereby provide a useful extension to the econometrician's toolkit. An empirical application illustrates the relevance of these tests to the AR-GARCH models for the weekly stock market return indices of some major and emerging countries.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Paper provided by C.E.P.R. Discussion Papers in its series CEPR Discussion Papers with number 9583.

    in new window

    Date of creation: Aug 2013
    Date of revision:
    Handle: RePEc:cpr:ceprdp:9583
    Contact details of provider: Postal: Centre for Economic Policy Research, 77 Bastwick Street, London EC1V 3PZ.
    Phone: 44 - 20 - 7183 8801
    Fax: 44 - 20 - 7183 8820

    Order Information: Email:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Y. K. Tse, 2002. "Residual-based diagnostics for conditional heteroscedasticity models," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 358-374, 06.
    2. Horv th, Lajos & Kokoszka, Piotr, 2001. "LARGE SAMPLE DISTRIBUTION OF WEIGHTED SUMS OF ARCH(p) SQUARED RESIDUAL CORRELATIONS," Econometric Theory, Cambridge University Press, vol. 17(02), pages 283-295, April.
    3. Drost, F.C. & Werker, B.J.M., 2004. "Semiparametric duration models," Other publications TiSEM a1895e3e-f720-454b-9613-f, Tilburg University, School of Economics and Management.
    4. Berkes, Istv n & Horv th, Lajos & Kokoszka, Piotr, 2003. "Asymptotics For Garch Squared Residual Correlations," Econometric Theory, Cambridge University Press, vol. 19(04), pages 515-540, August.
    5. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-78, December.
    6. Wright, Jonathan H, 2000. "Alternative Variance-Ratio Tests Using Ranks and Signs," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 1-9, January.
    7. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    8. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
    9. Bai, Jushan & Ng, Serena, 2001. "A consistent test for conditional symmetry in time series models," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 225-258, July.
    10. BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen VK, . "Multivariate GARCH models: a survey," CORE Discussion Papers RP 1847, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Jeganathan, P., 1995. "Some Aspects of Asymptotic Theory with Applications to Time Series Models," Econometric Theory, Cambridge University Press, vol. 11(05), pages 818-887, October.
    12. Hallin, M. & Werker, B.J.M., 2003. "Semiparametric efficiency, distribution-freeness and invariance," Other publications TiSEM fe20db00-786a-4261-9999-6, Tilburg University, School of Economics and Management.
    13. Hansen, B.E., 1992. "Autoregressive Conditional Density Estimation," RCER Working Papers 322, University of Rochester - Center for Economic Research (RCER).
    14. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-96, May.
    15. Honore, Bo E & Hu, Luojia, 2004. "On the Performance of Some Robust Instrumental Variables Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 30-39, January.
    16. Oliver Linton, 1993. "Adaptive Estimation in ARCH Models," Cowles Foundation Discussion Papers 1054, Cowles Foundation for Research in Economics, Yale University.
    17. Andreea Halunga & Chris D. Orme, 2007. "First order asymptotic theory for parametric misspecification tests of GARCH models," The School of Economics Discussion Paper Series 0721, Economics, The University of Manchester.
    18. Werner Ploberger & Peter C.B. Phillips, 2010. "Optimal Estimation under Nonstandard Conditions," Cowles Foundation Discussion Papers 1748, Cowles Foundation for Research in Economics, Yale University.
    19. Drost, F.C. & Klaassen, C.A.J. & Werker, B.J.M., 1997. "Adaptive estimation in time-series models," Other publications TiSEM aa253902-af93-4e1e-b974-2, Tilburg University, School of Economics and Management.
    20. Sherman, Robert P, 1993. "The Limiting Distribution of the Maximum Rank Correlation Estimator," Econometrica, Econometric Society, vol. 61(1), pages 123-37, January.
    21. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    22. Ploberger, Werner, 2004. "A complete class of tests when the likelihood is locally asymptotically quadratic," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 67-94.
    23. Sun, Yiguo & Stengos, Thanasis, 2006. "Semiparametric efficient adaptive estimation of asymmetric GARCH models," Journal of Econometrics, Elsevier, vol. 133(1), pages 373-386, July.
    24. K Abadir & W Distaso, . "Testing joint hypotheses when one of the alternatives is one-sided," Discussion Papers 05/13, Department of Economics, University of York.
    25. Shiqing Ling & Michael McAleer, 2001. "On Adaptive Estimation in Nonstationary ARMA Models with GARCH Errors," ISER Discussion Paper 0548, Institute of Social and Economic Research, Osaka University.
    26. Lumsdaine, Robin L. & Ng, Serena, 1999. "Testing for ARCH in the presence of a possibly misspecified conditional mean," Journal of Econometrics, Elsevier, vol. 93(2), pages 257-279, December.
    27. Lambert, Philippe & Laurent, Sébastien & Veredas, David, 2012. "Testing conditional asymmetry: A residual-based approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1229-1247.
    28. Drost, Feike C & Werker, Bas J M, 2004. "Semiparametric Duration Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 40-50, January.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:9583. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

    The email address of this maintainer does not seem to be valid anymore. Please ask to update the entry or send us the correct address

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.