IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/9583.html
   My bibliography  Save this paper

Residual-based Rank Specification Tests for AR-GARCH type models

Author

Listed:
  • Andreou, Elena
  • Werker, Bas J M

Abstract

This paper derives the asymptotic distribution for a number of rank-based and classical residual specification tests in AR-GARCH type models. We consider tests for the null hypotheses of no linear and quadratic serial residual autocorrelation, residual symmetry, and no structural breaks. For these tests we show that, generally, no size correction is needed in the asymptotic test distribution when applied to AR-GARCH type residuals obtained through QMLE estimation. To be precise, we give exact expressions for the limiting null distribution of the test statistics applied to residuals, and find that standard critical values often lead to conservative tests. For this result, we give simple sufficient conditions. Simulations show that our asymptotic approximations work well for a large number of AR-GARCH models and parameter values. We also show that the rank-based tests often, though not always, have superior power properties over the classical tests, even if they are conservative. We thereby provide a useful extension to the econometrician's toolkit. An empirical application illustrates the relevance of these tests to the AR-GARCH models for the weekly stock market return indices of some major and emerging countries.

Suggested Citation

  • Andreou, Elena & Werker, Bas J M, 2013. "Residual-based Rank Specification Tests for AR-GARCH type models," CEPR Discussion Papers 9583, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:9583
    as

    Download full text from publisher

    File URL: http://www.cepr.org/active/publications/discussion_papers/dp.php?dpno=9583
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marc Hallin & Bas Werker, 1998. "Optimal testing for semiparametric autoregressive models: from Gaussian Lagrange multipliers to regression rank scores and adaptive tests," ULB Institutional Repository 2013/2221, ULB -- Universite Libre de Bruxelles.
    2. Lumsdaine, Robin L. & Ng, Serena, 1999. "Testing for ARCH in the presence of a possibly misspecified conditional mean," Journal of Econometrics, Elsevier, vol. 93(2), pages 257-279, December.
    3. Marc Hallin & Bas Werker, 2003. "Semiparametric efficiency, distribution-freeness, and invariance," ULB Institutional Repository 2013/2119, ULB -- Universite Libre de Bruxelles.
    4. Berkes, Istv n & Horv th, Lajos & Kokoszka, Piotr, 2003. "Asymptotics For Garch Squared Residual Correlations," Econometric Theory, Cambridge University Press, vol. 19(04), pages 515-540, August.
    5. Shiqing Ling & Michael McAleer, 2001. "On Adaptive Estimation in Nonstationary ARMA Models with GARCH Errors," ISER Discussion Paper 0548, Institute of Social and Economic Research, Osaka University.
    6. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    7. Wright, Jonathan H, 2000. "Alternative Variance-Ratio Tests Using Ranks and Signs," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 1-9, January.
    8. Bai, Jushan & Ng, Serena, 2001. "A consistent test for conditional symmetry in time series models," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 225-258, July.
    9. Linton, Oliver, 1993. "Adaptive Estimation in ARCH Models," Econometric Theory, Cambridge University Press, vol. 9(04), pages 539-569, August.
    10. Y. K. Tse, 2002. "Residual-based diagnostics for conditional heteroscedasticity models," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 358-374, June.
    11. Drost, Feike C & Werker, Bas J M, 2004. "Semiparametric Duration Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 40-50, January.
    12. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-596, May.
    13. Hallin, M. & Vermandele, C. & Werker, B.J.M., 2003. "Serial and Nonserial Sign-and-Rank Statistics : Asymptotic Representation and Asymptotic Normality," Discussion Paper 2003-23, Tilburg University, Center for Economic Research.
    14. Halunga, Andreea G. & Orme, Chris D., 2009. "First-Order Asymptotic Theory For Parametric Misspecification Tests Of Garch Models," Econometric Theory, Cambridge University Press, vol. 25(02), pages 364-410, April.
    15. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    16. Lambert, Philippe & Laurent, Sébastien & Veredas, David, 2012. "Testing conditional asymmetry: A residual-based approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1229-1247.
    17. Ploberger, Werner, 2004. "A complete class of tests when the likelihood is locally asymptotically quadratic," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 67-94.
    18. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    19. Honore, Bo E & Hu, Luojia, 2004. "On the Performance of Some Robust Instrumental Variables Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 30-39, January.
    20. Drost, F.C. & Klaassen, C.A.J. & Werker, B.J.M., 1994. "Adaptive estimation in time-series models," Discussion Paper 1994-88, Tilburg University, Center for Economic Research.
    21. Ploberger, Werner & Phillips, Peter C.B., 2012. "Optimal estimation under nonstandard conditions," Journal of Econometrics, Elsevier, vol. 169(2), pages 258-265.
    22. Horv th, Lajos & Kokoszka, Piotr, 2001. "LARGE SAMPLE DISTRIBUTION OF WEIGHTED SUMS OF ARCH(p) SQUARED RESIDUAL CORRELATIONS," Econometric Theory, Cambridge University Press, vol. 17(02), pages 283-295, April.
    23. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    24. Abadir, Karim M. & Distaso, Walter, 2007. "Testing joint hypotheses when one of the alternatives is one-sided," Journal of Econometrics, Elsevier, vol. 140(2), pages 695-718, October.
    25. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    26. Jeganathan, P., 1995. "Some Aspects of Asymptotic Theory with Applications to Time Series Models," Econometric Theory, Cambridge University Press, vol. 11(05), pages 818-887, October.
    27. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
    28. Sherman, Robert P, 1993. "The Limiting Distribution of the Maximum Rank Correlation Estimator," Econometrica, Econometric Society, vol. 61(1), pages 123-137, January.
    29. Sun, Yiguo & Stengos, Thanasis, 2006. "Semiparametric efficient adaptive estimation of asymmetric GARCH models," Journal of Econometrics, Elsevier, vol. 133(1), pages 373-386, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    conditional heteroskedasticity; linear and quadratic residual autocorrelation tests; model misspecification test; nonlinear time series; parameter constancy; residual symmetry tests;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:9583. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.