IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Efficient Semiparametric Seemingly Unrelated Quantile Regression Estimation

  • Jun, Sung Jae
  • Pinkse, Joris

We propose an efficient semiparametric estimator for the coefficients of a multivariate linear regression model—with a conditional quantile restriction for each equation—in which the conditional distributions of errors given regressors are unknown. The procedure can be used to estimate multiple conditional quantiles of the same regression relationship. The proposed estimator is asymptotically as efficient as if the true optimal instruments were known. Simulation results suggest that the estimation procedure works well in practice and dominates an equation-by-equation efficiency correction if the errors are dependent conditional on the regressors.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: link to article abstract page
Download Restriction: no

Article provided by Cambridge University Press in its journal Econometric Theory.

Volume (Year): 25 (2009)
Issue (Month): 05 (October)
Pages: 1392-1414

in new window

Handle: RePEc:cup:etheor:v:25:y:2009:i:05:p:1392-1414_09
Contact details of provider: Postal: Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK
Web page:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:25:y:2009:i:05:p:1392-1414_09. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.