IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0912.5013.html
   My bibliography  Save this paper

Inference for Extremal Conditional Quantile Models, with an Application to Market and Birthweight Risks

Author

Listed:
  • Victor Chernozhukov
  • Ivan Fernandez-Val

Abstract

Quantile regression is an increasingly important empirical tool in economics and other sciences for analyzing the impact of a set of regressors on the conditional distribution of an outcome. Extremal quantile regression, or quantile regression applied to the tails, is of interest in many economic and financial applications, such as conditional value-at-risk, production efficiency, and adjustment bands in (S,s) models. In this paper we provide feasible inference tools for extremal conditional quantile models that rely upon extreme value approximations to the distribution of self-normalized quantile regression statistics. The methods are simple to implement and can be of independent interest even in the non-regression case. We illustrate the results with two empirical examples analyzing extreme fluctuations of a stock return and extremely low percentiles of live infants' birthweights in the range between 250 and 1500 grams.

Suggested Citation

  • Victor Chernozhukov & Ivan Fernandez-Val, 2009. "Inference for Extremal Conditional Quantile Models, with an Application to Market and Birthweight Risks," Papers 0912.5013, arXiv.org.
  • Handle: RePEc:arx:papers:0912.5013
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0912.5013
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bertail, Patrice & Haefke, Christian & Politis, D.N.Dimitris N. & White, Halbert, 2004. "Subsampling the distribution of diverging statistics with applications to finance," Journal of Econometrics, Elsevier, vol. 120(2), pages 295-326, June.
    2. Len Umantsev & Victor Chernozhukov, 2001. "Conditional value-at-risk: Aspects of modeling and estimation," Empirical Economics, Springer, vol. 26(1), pages 271-292.
    3. Donald, Stephen G. & Paarsch, Harry J., 2002. "Superconsistent estimation and inference in structural econometric models using extreme order statistics," Journal of Econometrics, Elsevier, vol. 109(2), pages 305-340, August.
    4. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, Enero-Abr.
    5. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    6. Feigin, Paul D. & Resnick, Sidney I., 1994. "Limit distributions for linear programming time series estimators," Stochastic Processes and their Applications, Elsevier, vol. 51(1), pages 135-165, June.
    7. Peter Christoffersen & Jinyong Hahn & Atsushi Inoue, 1999. "Testing, Comparing, and Combining Value at Risk Measures," Center for Financial Institutions Working Papers 99-44, Wharton School Center for Financial Institutions, University of Pennsylvania.
    8. Nicholas M. Kiefer & Timothy J. Vogelsang & Helle Bunzel, 2000. "Simple Robust Testing of Regression Hypotheses," Econometrica, Econometric Society, vol. 68(3), pages 695-714, May.
    9. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    10. Victor Chernozhukov & Han Hong, 2004. "Likelihood Estimation and Inference in a Class of Nonregular Econometric Models," Econometrica, Econometric Society, vol. 72(5), pages 1445-1480, September.
    11. Ricardo J. Caballero & Eduardo M. R. A. Engel, 1999. "Explaining Investment Dynamics in U.S. Manufacturing: A Generalized (S,s) Approach," Econometrica, Econometric Society, vol. 67(4), pages 783-826, July.
    12. Timmer, C P, 1971. "Using a Probabilistic Frontier Production Function to Measure Technical Efficiency," Journal of Political Economy, University of Chicago Press, vol. 79(4), pages 776-794, July-Aug..
    13. Mandelbrot, Benoit B, 1972. "Correction of an Error in "The Variation of Certain Speculative Prices" (1963)," The Journal of Business, University of Chicago Press, vol. 45(4), pages 542-543, October.
    14. Sen, Amartya, 1973. "On Economic Inequality," OUP Catalogue, Oxford University Press, number 9780198281931, Decembrie.
    15. Patrice Bertail & Christian Haefke & Dimitris N. Politis & Halbert White, 2001. "A subsampling approach to estimating the distribution of diversing statistics with application to assessing financial market risks," Economics Working Papers 599, Department of Economics and Business, Universitat Pompeu Fabra.
    16. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    17. Flinn, C. & Heckman, J., 1982. "New methods for analyzing structural models of labor force dynamics," Journal of Econometrics, Elsevier, vol. 18(1), pages 115-168, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    2. Chowdhury, Biplob & Jeyasreedharan, Nagaratnam & Dungey, Mardi, 2018. "Quantile relationships between standard, diffusion and jump betas across Japanese banks," Journal of Asian Economics, Elsevier, vol. 59(C), pages 29-47.
    3. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
    4. Carol Alexander & Emese Lazar & Silvia Stanescu, 2011. "Analytic Approximations to GARCH Aggregated Returns Distributions with Applications to VaR and ETL," ICMA Centre Discussion Papers in Finance icma-dp2011-08, Henley Business School, University of Reading.
    5. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    6. V L Miguéis & D F Benoit & D Van den Poel, 2013. "Enhanced decision support in credit scoring using Bayesian binary quantile regression," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(9), pages 1374-1383, September.
    7. Marrocu, Emanuela & Paci, Raffaele & Zara, Andrea, 2015. "Micro-economic determinants of tourist expenditure: A quantile regression approach," Tourism Management, Elsevier, vol. 50(C), pages 13-30.
    8. Igor Fedotenkov, 2013. "A bootstrap method to test for the existence of finite moments," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 315-322, June.
    9. Cheng-Few Lee & Jung-Bin Su, 2012. "Alternative statistical distributions for estimating value-at-risk: theory and evidence," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 309-331, October.
    10. Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel R. Smith, 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 150-160, January.
    11. Chen, Zhao & Cheng, Vivian Xinyi & Liu, Xu, 2024. "Reprint: Hypothesis testing on high dimensional quantile regression," Journal of Econometrics, Elsevier, vol. 239(2).
    12. Trino-Manuel Ñíguez, 2008. "Volatility and VaR forecasting in the Madrid Stock Exchange," Spanish Economic Review, Springer;Spanish Economic Association, vol. 10(3), pages 169-196, September.
    13. Chao, Shih-Kang & Härdle, Wolfgang K. & Yuan, Ming, 2021. "Factorisable Multitask Quantile Regression," Econometric Theory, Cambridge University Press, vol. 37(4), pages 794-816, August.
    14. Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
    15. Chan, Ngai Hang & Zhang, Rong-Mao, 2009. "Quantile inference for near-integrated autoregressive time series under infinite variance and strong dependence," Stochastic Processes and their Applications, Elsevier, vol. 119(12), pages 4124-4148, December.
    16. Oka, Tatsushi & Qu, Zhongjun, 2011. "Estimating structural changes in regression quantiles," Journal of Econometrics, Elsevier, vol. 162(2), pages 248-267, June.
    17. Rustam Ibragimov & Marat Ibragimov & Rufat Khamidov, 2010. "Measuring Inequality in CIS Countries: Theory and Empirics," wiiw Balkan Observatory Working Papers 88, The Vienna Institute for International Economic Studies, wiiw.
    18. López-Martín, Carmen & Arguedas-Sanz, Raquel & Muela, Sonia Benito, 2022. "A cryptocurrency empirical study focused on evaluating their distribution functions," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 387-407.
    19. repec:hum:wpaper:sfb649dp2016-057 is not listed on IDEAS
    20. Khalifa, Maha & Othman, Hakim Ben & Hussainey, Khaled, 2018. "The effect of ex ante and ex post conservatism on the cost of equity capital: A quantile regression approach for MENA countries," Research in International Business and Finance, Elsevier, vol. 44(C), pages 239-255.
    21. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0912.5013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.