IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03148840.html

Subsampling the distribution of diverging statistics with applications to finance

Author

Listed:
  • Patrice Bertail

    (FP2M - Fédération Parisienne de Modélisation Mathématique - CNRS - Centre National de la Recherche Scientifique, MODAL'X - Modélisation aléatoire de Paris X - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique)

  • Dimitris Politis

    (UC San Diego - University of California [San Diego] - UC - University of California)

  • Haeffke Christian
  • Halbert White

    (Department of Economics - UC San Diego - University of California [San Diego] - UC - University of California, UC San Diego - University of California [San Diego] - UC - University of California)

Abstract

No abstract is available for this item.

Suggested Citation

  • Patrice Bertail & Dimitris Politis & Haeffke Christian & Halbert White, 2004. "Subsampling the distribution of diverging statistics with applications to finance," Post-Print hal-03148840, HAL.
  • Handle: RePEc:hal:journl:hal-03148840
    DOI: 10.1016/S0304-4076(03)00215-X
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schennach, Susanne & White, Halbert & Chalak, Karim, 2012. "Local indirect least squares and average marginal effects in nonseparable structural systems," Journal of Econometrics, Elsevier, vol. 166(2), pages 282-302.
    2. Patrice Bertail, 2011. "Comments on: Subsampling weakly dependent time series and application to extremes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 487-490, November.
    3. Paul Doukhan & Silika Prohl & Christian Robert, 2011. "Subsampling weakly dependent time series and application to extremes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 447-479, November.
    4. Paul Doukhan & Silika Prohl & Christian Robert, 2011. "Rejoinder on: Subsampling weakly dependent time series and application to extremes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 499-502, November.
    5. Susanne Schennach & Halbert White & Karim Chalak, 2007. "Local Indirect Least Squares and Average Marginal Effects in Nonseparable Structural Systems," Boston College Working Papers in Economics 680, Boston College Department of Economics, revised 26 Dec 2009.
    6. Victor Chernozhukov & Iván Fernández-Val, 2011. "Inference for Extremal Conditional Quantile Models, with an Application to Market and Birthweight Risks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(2), pages 559-589.
    7. Daisuke Kurisu & Taisuke Otsu, 2021. "Nonparametric inference for extremal conditional quantiles," STICERD - Econometrics Paper Series 616, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    8. Vladislav Morozov, 2022. "Inference on Extreme Quantiles of Unobserved Individual Heterogeneity," Papers 2210.08524, arXiv.org, revised Jun 2025.
    9. Huang, Dashan & Yu, Baimin & Fabozzi, Frank J. & Fukushima, Masao, 2009. "CAViaR-based forecast for oil price risk," Energy Economics, Elsevier, vol. 31(4), pages 511-518, July.
    10. Kurisu, Daisuke & Otsu, Taisuke, 2023. "Subsampling inference for nonparametric extremal conditional quantiles," LSE Research Online Documents on Economics 120365, London School of Economics and Political Science, LSE Library.
    11. Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.
    12. Levent C. Uslu & Burak Evre, 2017. "Liquidity Adjusted Value At Risk: Integrating The Uncertainty In Depth And Tightness," Eurasian Journal of Business and Management, Eurasian Publications, vol. 5(1), pages 55-69.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03148840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.