IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2210.08524.html
   My bibliography  Save this paper

Inference on Extreme Quantiles of Unobserved Individual Heterogeneity

Author

Listed:
  • Vladislav Morozov

Abstract

We develop a methodology for conducting inference on extreme quantiles of unobserved individual heterogeneity (heterogeneous coefficients, heterogeneous treatment effects, etc.) in a panel data or meta-analysis setting. Inference in such settings is challenging: only noisy estimates of unobserved heterogeneity are available, and approximations based on the central limit theorem work poorly for extreme quantiles. For this situation, under weak assumptions we derive an extreme value theorem and an intermediate order theorem for noisy estimates and appropriate rate and moment conditions. Both theorems are then used to construct confidence intervals for extremal quantiles. The intervals are simple to construct and require no optimization. Inference based on the intermediate order theorem involves a novel self-normalized intermediate order theorem. In simulations, our extremal confidence intervals have favorable coverage properties in the tail. Our methodology is illustrated with an application to firm productivity in denser and less dense areas.

Suggested Citation

  • Vladislav Morozov, 2022. "Inference on Extreme Quantiles of Unobserved Individual Heterogeneity," Papers 2210.08524, arXiv.org, revised Jun 2023.
  • Handle: RePEc:arx:papers:2210.08524
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2210.08524
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierre‐Philippe Combes & Gilles Duranton & Laurent Gobillon & Diego Puga & Sébastien Roux, 2012. "The Productivity Advantages of Large Cities: Distinguishing Agglomeration From Firm Selection," Econometrica, Econometric Society, vol. 80(6), pages 2543-2594, November.
    2. James J. Heckman, 2001. "Micro Data, Heterogeneity, and the Evaluation of Public Policy: Nobel Lecture," Journal of Political Economy, University of Chicago Press, vol. 109(4), pages 673-748, August.
    3. Xavier Gabaix, 2016. "Power Laws in Economics: An Introduction," Journal of Economic Perspectives, American Economic Association, vol. 30(1), pages 185-206, Winter.
    4. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    5. Manuel Arellano & Stéphane Bonhomme, 2012. "Identifying Distributional Characteristics in Random Coefficients Panel Data Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 987-1020.
    6. Breitung, Jörg & Salish, Nazarii, 2021. "Estimation of heterogeneous panels with systematic slope variations," Journal of Econometrics, Elsevier, vol. 220(2), pages 399-415.
    7. repec:hal:pseose:hal-00812695 is not listed on IDEAS
    8. Victor Chernozhukov & Iván Fernández-Val, 2011. "Inference for Extremal Conditional Quantile Models, with an Application to Market and Birthweight Risks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(2), pages 559-589.
    9. Bertail, Patrice & Haefke, Christian & Politis, D.N.Dimitris N. & White, Halbert, 2004. "Subsampling the distribution of diverging statistics with applications to finance," Journal of Econometrics, Elsevier, vol. 120(2), pages 295-326, June.
    10. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    11. Ulrich K. Müller & Yulong Wang, 2017. "Fixed- Asymptotic Inference About Tail Properties," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1334-1343, July.
    12. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 487-535.
    13. Martin Browning & Jesus M. Carro, 2010. "Heterogeneity in dynamic discrete choice models," Econometrics Journal, Royal Economic Society, vol. 13(1), pages 1-39, February.
    14. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    15. Victor Chernozhukov, 2005. "Extremal quantile regression," Papers math/0505639, arXiv.org.
    16. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    17. Firpo, Sergio & Ridder, Geert, 2019. "Partial identification of the treatment effect distribution and its functionals," Journal of Econometrics, Elsevier, vol. 213(1), pages 210-234.
    18. Fan, Yanqin & Park, Sang Soo, 2010. "Sharp Bounds On The Distribution Of Treatment Effects And Their Statistical Inference," Econometric Theory, Cambridge University Press, vol. 26(3), pages 931-951, June.
    19. Asaf Weinstein & Zhuang Ma & Lawrence D. Brown & Cun-Hui Zhang, 2018. "Group-Linear Empirical Bayes Estimates for a Heteroscedastic Normal Mean," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 698-710, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Callaway, Brantly, 2021. "Bounds on distributional treatment effect parameters using panel data with an application on job displacement," Journal of Econometrics, Elsevier, vol. 222(2), pages 861-881.
    2. Ismaël Mourifié & Marc Henry & Romuald Méango, 2020. "Sharp Bounds and Testability of a Roy Model of STEM Major Choices," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 3220-3283.
    3. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    4. Kurisu, Daisuke & Otsu, Taisuke, 2023. "Subsampling inference for nonparametric extremal conditional quantiles," LSE Research Online Documents on Economics 120365, London School of Economics and Political Science, LSE Library.
    5. Kitagawa, Toru, 2021. "The identification region of the potential outcome distributions under instrument independence," Journal of Econometrics, Elsevier, vol. 225(2), pages 231-253.
    6. Erich Battistin & Carlos Lamarche & Enrico Rettore, 2024. "Quantiles of the gain distribution of an early childhood intervention," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(6), pages 1045-1064, September.
    7. Vira Semenova, 2023. "Aggregated Intersection Bounds and Aggregated Minimax Values," Papers 2303.00982, arXiv.org, revised Jun 2024.
    8. Sungwon Lee, 2021. "Partial Identification and Inference for Conditional Distributions of Treatment Effects," Papers 2108.00723, arXiv.org, revised Nov 2023.
    9. Jinhyun Lee, 2013. "Sharp Bounds on Heterogeneous Individual Treatment Responses," Discussion Paper Series, School of Economics and Finance 201310, School of Economics and Finance, University of St Andrews.
    10. Battistin, Erich & Lamarche, Carlos & Rettore, Enrico, 2020. "Quantiles of the Gain Distribution of an Early Child Intervention," CEPR Discussion Papers 14721, C.E.P.R. Discussion Papers.
    11. Daisuke Kurisu & Taisuke Otsu, 2021. "Nonparametric inference for extremal conditional quantiles," STICERD - Econometrics Paper Series 616, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    12. Sung Jae Jun & Yoonseok Lee & Youngki Shin, 2016. "Treatment Effects With Unobserved Heterogeneity: A Set Identification Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 302-311, April.
    13. Lee, Jinhyun, 2013. "Sharp Bounds on Heterogeneous Individual Treatment Responses," SIRE Discussion Papers 2013-89, Scottish Institute for Research in Economics (SIRE).
    14. Hoderlein, Stefan & White, Halbert, 2012. "Nonparametric identification in nonseparable panel data models with generalized fixed effects," Journal of Econometrics, Elsevier, vol. 168(2), pages 300-314.
    15. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    16. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    17. Pablo Lavado & Gonzalo Rivera, 2016. "Identifying Treatment Effects with Data Combination and Unobserved Heterogeneity," Working Papers 79, Peruvian Economic Association.
    18. Hou, Yanxi & Leng, Xuan & Peng, Liang & Zhou, Yinggang, 2024. "Panel quantile regression for extreme risk," Journal of Econometrics, Elsevier, vol. 240(1).
    19. Lyócsa, Štefan & Výrost, Tomáš, 2018. "Scale-free distribution of firm-size distribution in emerging economies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 501-505.
    20. Jiannan Lu & Peng Ding & Tirthankar Dasgupta, 2018. "Treatment Effects on Ordinal Outcomes: Causal Estimands and Sharp Bounds," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 540-567, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2210.08524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.