IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Local indirect least squares and average marginal effects in nonseparable structural systems

  • Schennach, Susanne
  • White, Halbert
  • Chalak, Karim

We study the scope of local indirect least squares (LILS) methods for nonparametrically estimating average marginal effects of an endogenous cause X on a response Y in triangular structural systems that need not exhibit linearity, separability, or monotonicity in scalar unobservables. One main finding is negative: in the fully nonseparable case, LILS methods cannot recover the average marginal effect. LILS methods can nevertheless test the hypothesis of no effect in the general nonseparable case. We provide new nonparametric asymptotic theory, treating both the traditional case of observed exogenous instruments Z and the case where one observes only error-laden proxies for Z.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0304407611002223
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 166 (2012)
Issue (Month): 2 ()
Pages: 282-302

as
in new window

Handle: RePEc:eee:econom:v:166:y:2012:i:2:p:282-302
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Heckman, James J. & Urzua, Sergio & Vytlacil, Edward, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," IZA Discussion Papers 2320, Institute for the Study of Labor (IZA).
  2. Jinyong Hahn & Geert Ridder, 2011. "Conditional Moment Restrictions and Triangular Simultaneous Equations," The Review of Economics and Statistics, MIT Press, vol. 93(2), pages 683-689, May.
  3. Rosa L. Matzkin, 2003. "Nonparametric Estimation of Nonadditive Random Functions," Econometrica, Econometric Society, vol. 71(5), pages 1339-1375, 09.
  4. Darolles, Serge & Fan, Yanqin & Florens, Jean-Pierre & Renault, Eric, 2003. "Non Parametric Instrumental Regression," IDEI Working Papers 228, Institut d'Économie Industrielle (IDEI), Toulouse, revised 2010.
  5. Politis, Dimitris N. & Romano, Joseph P., 1999. "Multivariate Density Estimation with General Flat-Top Kernels of Infinite Order," Journal of Multivariate Analysis, Elsevier, vol. 68(1), pages 1-25, January.
  6. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects and Econometric Policy Evaluation," NBER Working Papers 11259, National Bureau of Economic Research, Inc.
  7. Pedro Carneiro & James J. Heckman & Edward J. Vytlacil, 2009. "Evaluating Marginal Policy Changes and the Average Effect of Treatment for Individuals at the Margin," NBER Working Papers 15211, National Bureau of Economic Research, Inc.
  8. Joshua D. Angrist & Guido W. Imbens, 1995. "Identification and Estimation of Local Average Treatment Effects," NBER Technical Working Papers 0118, National Bureau of Economic Research, Inc.
  9. Hoderlein, Stefan & Winter, Joachim, 2009. "Structural Measurement Errors in Nonseparable Models," Discussion Papers in Economics 9192, University of Munich, Department of Economics.
  10. Li, Tong & Vuong, Quang, 1998. "Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 139-165, May.
  11. Butcher, Kristin F & Case, Anne, 1994. "The Effect of Sibling Sex Composition on Women's Education and Earnings," The Quarterly Journal of Economics, MIT Press, vol. 109(3), pages 531-63, August.
  12. Stefan Hoderlein, 2009. "How Many Consumers are Rational?," Boston College Working Papers in Economics 748, Boston College Department of Economics.
  13. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, 01.
  14. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(03), pages 560-586, June.
  15. Oliver LINTON, . "Applied nonparametric methods," Statistic und Oekonometrie 9312, Humboldt Universitaet Berlin.
  16. Schennach, Susanne M., 2004. "Nonparametric Regression In The Presence Of Measurement Error," Econometric Theory, Cambridge University Press, vol. 20(06), pages 1046-1093, December.
  17. Chernozhukov, Victor & Imbens, Guido W. & Newey, Whitney K., 2007. "Instrumental variable estimation of nonseparable models," Journal of Econometrics, Elsevier, vol. 139(1), pages 4-14, July.
  18. Whitney Newey & Guido Imbens, 2004. "Identification and Estimation of Triangular Simultaneous Equations Models without Additivity," Econometric Society 2004 North American Summer Meetings 594, Econometric Society.
  19. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-82, November.
  20. Hardle, W., 1992. "Applied Nonparametric Methods," Papers 9204, Catholique de Louvain - Institut de statistique.
  21. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, 09.
  22. Milgrom, Paul & Shannon, Chris, 1994. "Monotone Comparative Statics," Econometrica, Econometric Society, vol. 62(1), pages 157-80, January.
  23. Susanne M. Schennach, 2004. "Estimation of Nonlinear Models with Measurement Error," Econometrica, Econometric Society, vol. 72(1), pages 33-75, 01.
  24. Susanne M. Schennach, 2004. "Instrumental Variable Estimation of Nonlinear Errors-in-Variables Models," Econometric Society 2004 North American Summer Meetings 602, Econometric Society.
  25. Karim Chalak & Halbert White, 2011. "Viewpoint: An extended class of instrumental variables for the estimation of causal effects," Canadian Journal of Economics, Canadian Economics Association, vol. 44(1), pages 1-51, February.
  26. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, 01.
  27. Stefan Hoderlein & Enno Mammen, 2007. "Identification of Marginal Effects in Nonseparable Models Without Monotonicity," Econometrica, Econometric Society, vol. 75(5), pages 1513-1518, 09.
  28. Karim Chalak & Halbert White, 2007. "An Extended Class of Instrumental Variables for the Estimation of Causal Effects," Boston College Working Papers in Economics 692, Boston College Department of Economics, revised 30 Nov 2009.
  29. repec:cup:cbooks:9780521586115 is not listed on IDEAS
  30. Richard Blundell & James Powell, 2001. "Endogeneity in nonparametric and semiparametric regression models," CeMMAP working papers CWP09/01, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  31. James J. Heckman & Edward J. Vytlacil, 2000. "Local Instrumental Variables," NBER Technical Working Papers 0252, National Bureau of Economic Research, Inc.
  32. Halbert White & Karim Chalak, 2008. "Identifying Structural Effects in Nonseparable Systems Using Covariates," Boston College Working Papers in Economics 734, Boston College Department of Economics.
  33. Andrew Chesher, 2003. "Identification in Nonseparable Models," Econometrica, Econometric Society, vol. 71(5), pages 1405-1441, 09.
  34. repec:cup:cbooks:9780521355643 is not listed on IDEAS
  35. James Heckman, 1997. "Instrumental Variables: A Study of Implicit Behavioral Assumptions Used in Making Program Evaluations," Journal of Human Resources, University of Wisconsin Press, vol. 32(3), pages 441-462.
  36. Joseph G. Altonji & Rosa L. Matzkin, 2001. "Panel Data Estimators for Nonseparable Models with Endogenous Regressors," NBER Technical Working Papers 0267, National Bureau of Economic Research, Inc.
  37. Bertail, Patrice & Haefke, Christian & Politis, D.N.Dimitris N. & White, Halbert, 2004. "Subsampling the distribution of diverging statistics with applications to finance," Journal of Econometrics, Elsevier, vol. 120(2), pages 295-326, June.
  38. Joseph G. Altonji & Rosa L. Matzkin, 2005. "Cross Section and Panel Data Estimators for Nonseparable Models with Endogenous Regressors," Econometrica, Econometric Society, vol. 73(4), pages 1053-1102, 07.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:166:y:2012:i:2:p:282-302. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.