IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v77y2009i5p1481-1512.html
   My bibliography  Save this article

Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity

Author

Listed:
  • Guido W. Imbens
  • Whitney K. Newey

Abstract

This paper uses control variables to identify and estimate models with nonseparable, multidimensional disturbances. Triangular simultaneous equations models are considered, with instruments and disturbances that are independent and a reduced form that is strictly monotonic in a scalar disturbance. Here it is shown that the conditional cumulative distribution function of the endogenous variable given the instruments is a control variable. Also, for any control variable, identification results are given for quantile, average, and policy effects. Bounds are given when a common support assumption is not satisfied. Estimators of identified objects and bounds are provided, and a demand analysis empirical example is given. Copyright 2009 The Econometric Society.

Suggested Citation

  • Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
  • Handle: RePEc:ecm:emetrp:v:77:y:2009:i:5:p:1481-1512
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.3982/ECTA7108
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Amemiya, Takeshi, 1982. "Two Stage Least Absolute Deviations Estimators," Econometrica, Econometric Society, vol. 50(3), pages 689-711, May.
    2. Manski, Charles F, 1990. "Nonparametric Bounds on Treatment Effects," American Economic Review, American Economic Association, vol. 80(2), pages 319-323, May.
    3. Joseph G. Altonji & Hidehiko Ichimura & Taisuke Otsu, 2012. "Estimating Derivatives in Nonseparable Models With Limited Dependent Variables," Econometrica, Econometric Society, vol. 80(4), pages 1701-1719, July.
    4. Andrew Chesher, 2001. "Quantile driven identification of structural derivatives," CeMMAP working papers CWP08/01, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Joseph G. Altonji & Rosa L. Matzkin, 2001. "Panel Data Estimators for Nonseparable Models with Endogenous Regressors," NBER Technical Working Papers 0267, National Bureau of Economic Research, Inc.
    6. Manski, Charles F., 1992. "Identification Problems In The Social Sciences," SSRI Workshop Series 292716, University of Wisconsin-Madison, Social Systems Research Institute.
    7. Chamberlain, Gary, 1984. "Panel data," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 22, pages 1247-1318, Elsevier.
    8. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.
    9. Andrew Chesher, 2002. "Semiparametric identification in duration models," CeMMAP working papers CWP20/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Hausman, Jerry A & Newey, Whitney K, 1995. "Nonparametric Estimation of Exact Consumers Surplus and Deadweight Loss," Econometrica, Econometric Society, vol. 63(6), pages 1445-1476, November.
    11. Patrick Bajari & C. Lanier Benkard, 2001. "Demand Estimation With Heterogeneous Consumers and Unobserved Product Characteristics: A Hedonic Approach," NBER Technical Working Papers 0272, National Bureau of Economic Research, Inc.
    12. Susan Athey & Philip A. Haile, 2002. "Identification of Standard Auction Models," Econometrica, Econometric Society, vol. 70(6), pages 2107-2140, November.
    13. Andrew Chesher, 2002. "Local identification in nonseparable models," CeMMAP working papers CWP05/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Donald J. Brown & Rosa L. Matzkin, 1998. "Estimation of Nonparametric Functions in Simultaneous Equations Models, with an Application to Consumer Demand," Cowles Foundation Discussion Papers 1175, Cowles Foundation for Research in Economics, Yale University.
    15. Susan Athey, 2002. "Monotone Comparative Statics under Uncertainty," The Quarterly Journal of Economics, Oxford University Press, vol. 117(1), pages 187-223.
    16. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    17. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    18. Susan Athey & Scott Stern, 1998. "An Empirical Framework for Testing Theories About Complimentarity in Organizational Design," NBER Working Papers 6600, National Bureau of Economic Research, Inc.
    19. Stoker, Thomas M, 1986. "Consistent Estimation of Scaled Coefficients," Econometrica, Econometric Society, vol. 54(6), pages 1461-1481, November.
    20. Heckman, James J, 1990. "Varieties of Selection Bias," American Economic Review, American Economic Association, vol. 80(2), pages 313-318, May.
    21. James J. Heckman & Edward J. Vytlacil, 2000. "Local Instrumental Variables," NBER Technical Working Papers 0252, National Bureau of Economic Research, Inc.
    22. Milgrom, Paul & Shannon, Chris, 1994. "Monotone Comparative Statics," Econometrica, Econometric Society, vol. 62(1), pages 157-180, January.
    23. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    24. Whitney K. Newey & James L. Powell & Francis Vella, 1999. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Econometrica, Econometric Society, vol. 67(3), pages 565-604, May.
    25. Andrew Chesher, 2003. "Identification in Nonseparable Models," Econometrica, Econometric Society, vol. 71(5), pages 1405-1441, September.
    26. Richard Blundell & James L. Powell, 2001. "Endogeneity in nonparametric and semiparametric regression models," CeMMAP working papers 09/01, Institute for Fiscal Studies.
    27. Chamberlain, Gary, 1986. "Asymptotic efficiency in semi-parametric models with censoring," Journal of Econometrics, Elsevier, vol. 32(2), pages 189-218, July.
    28. Mitali Das, 2000. "Instrumental Variables Estimation of Nonparametric Models with Discrete Endogenous Regressors," Econometric Society World Congress 2000 Contributed Papers 1008, Econometric Society.
    29. Darolles, Serge & Fan, Yanqin & Florens, Jean-Pierre & Renault, Eric, 2003. "Non Parametric Instrumental Regression," IDEI Working Papers 228, Institut d'Économie Industrielle (IDEI), Toulouse, revised 2010.
    30. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    31. Joshua D. Angrist & Kathryn Graddy & Guido W. Imbens, 2000. "The Interpretation of Instrumental Variables Estimators in Simultaneous Equations Models with an Application to the Demand for Fish," Review of Economic Studies, Oxford University Press, vol. 67(3), pages 499-527.
    32. Benkard, C. Lanier & Bajari, Patrick, 2001. "Demand Estimation with Heterogeneous Consumers and Unobserved Product Characteristics: A Hedonic Approach," Research Papers 1691, Stanford University, Graduate School of Business.
    33. Patrick Bajari & C. Lanier Benkard, 2001. "Demand Estimation With Heterogeneous Consumers and Unobserved Product Characteristics: A Hedonic Approach," Working Papers 01010, Stanford University, Department of Economics.
    34. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    35. Charles F. Manski, 1997. "The Mixing Problem in Programme Evaluation," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 537-553.
    36. Joshua D. Angrist & Guido W. Imbens & D.B. Rubin, 1993. "Identification of Causal Effects Using Instrumental Variables," NBER Technical Working Papers 0136, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chesher, Andrew, 2007. "Instrumental values," Journal of Econometrics, Elsevier, vol. 139(1), pages 15-34, July.
    2. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    3. Schennach, Susanne & White, Halbert & Chalak, Karim, 2012. "Local indirect least squares and average marginal effects in nonseparable structural systems," Journal of Econometrics, Elsevier, vol. 166(2), pages 282-302.
    4. Halbert White & Karim Chalak, 2008. "Identifying Structural Effects in Nonseparable Systems Using Covariates," Boston College Working Papers in Economics 734, Boston College Department of Economics.
    5. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    6. Lee, Sokbae, 2007. "Endogeneity in quantile regression models: A control function approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 1131-1158, December.
    7. Susanne Schennach & Halbert White & Karim Chalak, 2007. "Local Indirect Least Squares and Average Marginal Effects in Nonseparable Structural Systems," Boston College Working Papers in Economics 680, Boston College Department of Economics, revised 26 Dec 2009.
    8. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    9. Das, M., 2005. "Instrumental variables estimators of nonparametric models with discrete endogenous regressors," Journal of Econometrics, Elsevier, vol. 124(2), pages 335-361, February.
    10. Woocheol Kim, 2004. "Identification And Estimation Of Nonparametric Structural," Econometric Society 2004 Far Eastern Meetings 733, Econometric Society.
    11. Joshua D. Angrist, 2004. "Treatment effect heterogeneity in theory and practice," Economic Journal, Royal Economic Society, vol. 114(494), pages 52-83, March.
    12. Jean-Pierre Florens & James Heckman & Costas Meghir & Edward Vytlacil, 2002. "Instrumental variables, local instrumental variables and control functions," CeMMAP working papers CWP15/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Yu, Ping & Phillips, Peter C.B., 2018. "Threshold regression with endogeneity," Journal of Econometrics, Elsevier, vol. 203(1), pages 50-68.
    14. Andrew Chesher, 2005. "Nonparametric Identification under Discrete Variation," Econometrica, Econometric Society, vol. 73(5), pages 1525-1550, September.
    15. Frolich, Markus, 2007. "Nonparametric IV estimation of local average treatment effects with covariates," Journal of Econometrics, Elsevier, vol. 139(1), pages 35-75, July.
    16. Meghir, Costas & Rivkin, Steven, 2011. "Econometric Methods for Research in Education," Handbook of the Economics of Education, in: Erik Hanushek & Stephen Machin & Ludger Woessmann (ed.), Handbook of the Economics of Education, edition 1, volume 3, chapter 1, pages 1-87, Elsevier.
    17. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
    18. Bryan S. Graham & James Powell, 2008. "Identification and Estimation of 'Irregular' Correlated Random Coefficient Models," NBER Working Papers 14469, National Bureau of Economic Research, Inc.
    19. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    20. Guido W. Imbens, 2010. "Better LATE Than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua (2009)," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 399-423, June.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:77:y:2009:i:5:p:1481-1512. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.