IDEAS home Printed from https://ideas.repec.org/p/ecm/wc2000/1008.html

Instrumental Variables Estimation of Nonparametric Models with Discrete Endogenous Regressors

Author

Listed:
  • Mitali Das

    (Columbia University)

Abstract

This paper presents new instrumental variables estimators for nonparametric models with discrete endogenous regressors. The model specification is sufficiently general to include structural models, triangular simultaneous equations and certain models of measurement error. One motivation of the model specification is program evaluation problems, which arise frequently in empirical policy applications. Restricting the analysis to discrete endogenous regressors is an integral component of the analysis since a similar model with continuously distributed endogenous regressors is ill-posed and cannot be identified. The central contribution of this paper is a consistent two-step nonparametric instrumental variables estimator of the model. Large sample results, including global convergence rates and asmptotic normality are also provided. Discreteness of the regressors is shown to produce an additive representation of the model which leads to a simple verifiable condition for identification, and a restriction that is imposed in estimation. The proposed nonparametric two-step IV estimator is based on series estimation, which is particularly amenable to additive models, and yields efficiency gains in imposing additivity. The first step constitutes nonparametric estimation of the instrument, while the second step constructs the IV estimator from a linear combination of an instrument matrix and a matrix of the regression covariates. Nonparametric estimation of the instruments permits bypassing the specification of conditional distributions, but is heuristic, and does not affect the subsequent large sample results of the estimator. Linear functionals of the estimator are shown to be asymptotically normal, including root-n-consistent when certain regularity conditions hold.

Suggested Citation

  • Mitali Das, 2000. "Instrumental Variables Estimation of Nonparametric Models with Discrete Endogenous Regressors," Econometric Society World Congress 2000 Contributed Papers 1008, Econometric Society.
  • Handle: RePEc:ecm:wc2000:1008
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/RePEc/es2000/1008.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrews, Donald W K, 1991. "Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models," Econometrica, Econometric Society, vol. 59(2), pages 307-345, March.
    2. Angrist, Joshua D, 1990. "Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records: Errata," American Economic Review, American Economic Association, vol. 80(5), pages 1284-1286, December.
    3. Hausman, Jerry A & Newey, Whitney K, 1995. "Nonparametric Estimation of Exact Consumers Surplus and Deadweight Loss," Econometrica, Econometric Society, vol. 63(6), pages 1445-1476, November.
    4. Heckman, James J, 1978. "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, Econometric Society, vol. 46(4), pages 931-959, July.
    5. Moffitt, Robert, 1983. "An Economic Model of Welfare Stigma," American Economic Review, American Economic Association, vol. 73(5), pages 1023-1035, December.
    6. Ahn, Hyungtaik, 1995. "Nonparametric two-stage estimation of conditional choice probabilities in a binary choice model under uncertainty," Journal of Econometrics, Elsevier, vol. 67(2), pages 337-378, June.
    7. Amemiya, Takeshi, 1974. "The nonlinear two-stage least-squares estimator," Journal of Econometrics, Elsevier, vol. 2(2), pages 105-110, July.
    8. Mitali Das & Whitney K. Newey & Francis Vella, 2003. "Nonparametric Estimation of Sample Selection Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(1), pages 33-58.
    9. Robinson, P M, 1976. "Instrumental Variables Estimation of Differential Equations," Econometrica, Econometric Society, vol. 44(4), pages 765-776, July.
    10. Hausman, Jerry A. & Newey, Whitney K. & Ichimura, Hidehiko & Powell, James L., 1991. "Identification and estimation of polynomial errors-in-variables models," Journal of Econometrics, Elsevier, vol. 50(3), pages 273-295, December.
    11. Andrews, Donald W.K. & Whang, Yoon-Jae, 1990. "Additive Interactive Regression Models: Circumvention of the Curse of Dimensionality," Econometric Theory, Cambridge University Press, vol. 6(4), pages 466-479, December.
    12. James J. Heckman & Jeffrey Smith, 2000. "The Sensitivity of Experimental Impact Estimates (Evidence from the National JTPA Study)," NBER Chapters, in: Youth Employment and Joblessness in Advanced Countries, pages 331-356, National Bureau of Economic Research, Inc.
    13. James M. Poterba & Steven F. Venti & David A. Wise, 1996. "How Retirement Saving Programs Increase Saving," Journal of Economic Perspectives, American Economic Association, vol. 10(4), pages 91-112, Fall.
    14. Whitney K. Newey & James L. Powell & Francis Vella, 1999. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Econometrica, Econometric Society, vol. 67(3), pages 565-604, May.
    15. Chevalier, Judith A, 1995. "Capital Structure and Product-Market Competition: Empirical Evidence from the Supermarket Industry," American Economic Review, American Economic Association, vol. 85(3), pages 415-435, June.
    16. Moffitt, Robert & Wolfe, Barbara L, 1992. "The Effect of the Medicaid Program on Welfare Participation and Labor Supply," The Review of Economics and Statistics, MIT Press, vol. 74(4), pages 615-626, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew Chesher, 2005. "Nonparametric Identification under Discrete Variation," Econometrica, Econometric Society, vol. 73(5), pages 1525-1550, September.
    2. Das, M., 2005. "Instrumental variables estimators of nonparametric models with discrete endogenous regressors," Journal of Econometrics, Elsevier, vol. 124(2), pages 335-361, February.
    3. Christopher Taber & Hidehiko Ichimura, 2001. "Propensity-Score Matching with Instrumental Variables," American Economic Review, American Economic Association, vol. 91(2), pages 119-124, May.
    4. Arthur Lewbel, 2007. "Coherency And Completeness Of Structural Models Containing A Dummy Endogenous Variable," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1379-1392, November.
    5. Chesher, Andrew, 2007. "Instrumental values," Journal of Econometrics, Elsevier, vol. 139(1), pages 15-34, July.
    6. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    7. Andrew Chesher, 2004. "Identification in additive error models with discrete endogenous variables," CeMMAP working papers 11/04, Institute for Fiscal Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    2. Das, M., 2004. "Simple estimators for nonparametric panel data models with sample attrition," Journal of Econometrics, Elsevier, vol. 120(1), pages 159-180, May.
    3. Joshua D. Angrist & Kathryn Graddy & Guido W. Imbens, 1995. "Non-Parametric Demand Analysis with an Application to the Demand for Fish," NBER Technical Working Papers 0178, National Bureau of Economic Research, Inc.
    4. Das, M., 2003. "Identification and sequential estimation of panel data models with insufficient exclusion restrictions," Journal of Econometrics, Elsevier, vol. 114(2), pages 297-328, June.
    5. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    6. Blundell, Richard & Macurdy, Thomas, 1999. "Labor supply: A review of alternative approaches," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 27, pages 1559-1695, Elsevier.
    7. Louise Laage, 2020. "A Correlated Random Coefficient Panel Model with Time-Varying Endogeneity," Papers 2003.09367, arXiv.org, revised Nov 2022.
    8. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    9. Richard W. Blundell & James L. Powell, 2004. "Endogeneity in Semiparametric Binary Response Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(3), pages 655-679.
    10. Arthur Lewbel & Oliver Linton, 2007. "Nonparametric Matching and Efficient Estimators of Homothetically Separable Functions," Econometrica, Econometric Society, vol. 75(4), pages 1209-1227, July.
    11. Jacho-Chávez, David & Lewbel, Arthur & Linton, Oliver, 2010. "Identification and nonparametric estimation of a transformed additively separable model," Journal of Econometrics, Elsevier, vol. 156(2), pages 392-407, June.
    12. Arthur Lewbel & Oliver Linton, 2003. "Nonparametric estimation of homothetic and homothetically separable functions," CeMMAP working papers 14/03, Institute for Fiscal Studies.
    13. Cai, Zongwu & Das, Mitali & Xiong, Huaiyu & Wu, Xizhi, 2006. "Functional coefficient instrumental variables models," Journal of Econometrics, Elsevier, vol. 133(1), pages 207-241, July.
    14. Guggenberger, Patrik & Smith, Richard J., 2008. "Generalized empirical likelihood tests in time series models with potential identification failure," Journal of Econometrics, Elsevier, vol. 142(1), pages 134-161, January.
    15. Kamhon Kan & Chihwa Kao, 2005. "Simulation-Based Two-Step Estimation with Endogenous Regressors," Center for Policy Research Working Papers 76, Center for Policy Research, Maxwell School, Syracuse University.
    16. Juan Carlos Escanciano & Telmo P'erez-Izquierdo, 2023. "Automatic Debiased Estimation with Machine Learning-Generated Regressors," Papers 2301.10643, arXiv.org, revised May 2025.
    17. Alberto Abadie, 2000. "Semiparametric Estimation of Instrumental Variable Models for Causal Effects," NBER Technical Working Papers 0260, National Bureau of Economic Research, Inc.
    18. David S. Lee & Thomas Lemieux, 2009. "Regression Discontinuity Designs In Economics," Working Papers 1118, Princeton University, Department of Economics, Industrial Relations Section..
    19. Martin Huber, 2012. "Identification of Average Treatment Effects in Social Experiments Under Alternative Forms of Attrition," Journal of Educational and Behavioral Statistics, , vol. 37(3), pages 443-474, June.
    20. Gary V. Engelhardt & Anil Kumar, 2007. "Employer Matching and 401(k) Saving: Evidence from the Health and Retirement Study," NBER Chapters, in: Public Policy and Retirement, Trans-Atlantic Public Economics Seminar (TAPES), pages 1920-1943, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:1008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.