IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v70y2002i6p2107-2140.html

Identification of Standard Auction Models

Author

Listed:
  • Susan Athey

    (Stanford University)

  • Philip A. Haile

    (University of Wisconsin)

Abstract

This paper presents new identification results for models of first-price, second-price, ascending (English), and descending (Dutch) auctions. We consider a general specification of the latent demand and information structure, nesting both private values and common values models, and allowing correlated types as well as ex ante asymmetry. We address identification of a series of nested models and derive testable restrictions enabling discrimination between models on the basis of observed data. The simplest model--symmetric independent private values--is nonparametrically identified even if only the transaction price from each auction is observed. For richer models, identification and testable restrictions may be obtained when additional information of one or more of the following types is available: (i) the identity of the winning bidder or other bidders; (ii) one or more bids in addition to the transaction price; (iii) exogenous variation in the number of bidders; (iv) bidder-specific covariates. While many private values (PV) models are nonparametrically identified and testable with commonly available data, identification of common values (CV) models requires stringent assumptions. Nonetheless, the PV model can be tested against the CV alternative, even when neither model is identified. Copyright The Econometric Society 2002.

Suggested Citation

  • Susan Athey & Philip A. Haile, 2002. "Identification of Standard Auction Models," Econometrica, Econometric Society, vol. 70(6), pages 2107-2140, November.
  • Handle: RePEc:ecm:emetrp:v:70:y:2002:i:6:p:2107-2140
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:70:y:2002:i:6:p:2107-2140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.